Math, asked by savithribiotech, 10 months ago

if alpha, beta are the roots of the equation ax square + bx + c equal to zero and alpha +k, beta + K are the roots of the equation px square + q x + r are equal to zero then K equal to​

Answers

Answered by Anonymous
40

\Huge{\underline{\underline{\mathfrak{Question \colon }}}}

If \alpha , \beta are the roots of the equation ax² + bx + c = 0 and, \alpha + K, \beta + K are the roots of the equation px² + qx + r = 0, then K equal to

\Huge{\underline{\underline{\mathfrak{Answer \colon }}}}

Given that,

\alpha \ and \  \beta are the zeros of the equation ax² + bx + c = 0 and, \alpha + K \ and \ \beta + K are the zeros of the equation px² + qx + r

To find

Value of K

Sum of Zeros

 \large{\boxed{ \sf{ \alpha  +  \beta  = \:  -  \dfrac{x \: coefficient}{x {}^{2} \: coefficient } }}}

Consider equation ax² + bx + c = 0,

 \large{\sf{ \alpha  +  \beta } =    - \dfrac{ b}{a} \:  \:  \:   -  -  -  -  -  -  -  - (1) }

Consider equation px² + qx + r = 0,

 \large{ \sf{( \alpha  + K) + ( \beta  + K) =  -   \dfrac{q}{p}  }} \\  \\   \large{ \implies \:  \sf{( \alpha  +  \beta ) + 2K =  -  \frac{ q}{p} }}

From equation (1),

 \large{ \sf{ -  \dfrac{b}{a} + 2K =  -  \dfrac{p}{q}  }} \\  \\  \large{ \implies \:  \sf{2K =  \dfrac{bq - ap}{aq} }} \\  \\  \huge{ \implies \:  \boxed{ \boxed{ \sf{ \green{K =  \frac{bq - ap}{aq} }}}}}

Answered by EliteSoul
26

Answer:

\huge{\underline{\underline{\mathfrak{Answer\::}}}}

K = (bp-aq)/2ap

___________________________

 (\alpha  +  \beta )are \: the \: roots \: of =  \\ ax {}^{2}  + bx + c \\  \\  (\alpha + k)( \beta  + k)are \: the \: roots \: of =  \\ px {}^{2} + qx + r \\consider \: ax {}^{2} + bx + c = 0   \\  (\alpha +   \beta  ) =  -  \frac{co \: efficient \: of \: x}{co \: efficient \: of \: x {}^{2} }  \\  (\alpha  +  \beta  ) =  -  \frac{b}{a} \\  \\  consider \: px {}^{2}  + qx + r = 0 \\  (\alpha + k)  (\beta  + k) =  -  \frac{co \: efficient \: of \: x}{co \: efficient \: of \: x {}^{2} }  \\  (\alpha  + k)( \beta  + k) =  -  \frac{q}{p}  \\  (\alpha   + \beta ) + 2k =  -  \frac{q}{p}  \\  -  \frac{b}{a}  +2 k =  -  \frac{q}{p}  \\ 2k =  \frac{b}{a}  -  \frac{q}{p}  \\ 2k =  \frac{bp - aq}{ap}  \\ k =  \frac{bp - aq}{2ap}

Hope it helps you ♥ ♥ ♥

Similar questions