If alpha, beta are the roots of the equation ax2 + bx + c = 0, then find the equation whose roots are a(alpha)+b, a(beta)+ b .
Answers
ax2+bx+c=0
α+β=a−b αβ=ac
(i) equation whose roots are α21,β21
Sum of roots =α21+β21=(αβ)2α2+β2=(αβ)2(α+β)2−2αβ)
=a2c2a2b2−a2c=c2b2−2ac\
product =α21β21=c2a2
∴ equation is c2x2+(2ac−b2)x+a2=0
(ii) aα+β1,aβ+α1
Sum ⇒a2αβ+α2a+aβ2+αβaβ+aα+β
⇒(a2+1)(αβ)+a(αβ)(α+β)(1+a)
⇒(a2+1)ac+a(a2b2−a2c)(1+a)(ab)
⇒(a2+1)c+a(b2−2ac)−(1+a)b
⇒c(1+a2)+ab2−(1+a)b
Product c(1−a2)+ab2a
∴(c(1−a2)+ab2)x2+(1+a)bx+a=0
(iii) α+β1,β+α1
Sum ⇒βαβ+1+ααβ+1
⇒αβα2β(αβ)+(α2+β
⇒a−b+c−b
−b[aca+c]
Product αβ(αβ+1)2
⇒a2ac(c+a)2
⇒(α+β)+αβαβ
[a+cac]x2+bx+(a+c)=0
ax2+bx+c=0
α+β=a−b αβ=ac
(i) equation whose roots are α21,β21
Sum of roots =α21+β21=(αβ)2α2+β2=(αβ)2(α+β)2−2αβ)
=a2c2a2b2−a2c=c2b2−2ac\
product =α21β21=c2a2
∴ equation is c2x2+(2ac−b2)x+a2=0
(ii) aα+β1,aβ+α1
Sum ⇒a2αβ+α2a+aβ2+αβaβ+aα+β
⇒(a2+1)(αβ)+a(αβ)(α+β)(1+a)
⇒(a2+1)ac+a(a2b2−a2c)(1+a)(ab)
⇒(a2+1)c+a(b2−2ac)−(1+a)b
⇒c(1+a2)+ab2−(1+a)b
Product c(1−a2)+ab2a
∴(c(1−a2)+ab2)x2+(1+a)bx+a=0
(iii) α+β1,β+α1
Sum ⇒βαβ+1+ααβ+1
⇒αβα2β(αβ)+(α2+β
⇒a−b+c−b
−b[aca+c]
Product αβ(αβ+1)2
⇒a2ac(c+a)2
⇒(α+β)+αβαβ
[a+cac]x2+bx+(a+c)=0