Math, asked by vatlapatikasaiah, 4 months ago

If alpha, beta are the roots of the equation ax2 + bx + c = 0, then find the equation whose roots are a(alpha)+b, a(beta)+ b .​

Answers

Answered by prabhas24480
0

\huge\mathcal\pink{ANSWER:-}

ax2+bx+c=0

α+β=a−b  αβ=ac

(i) equation whose roots are α21,β21

Sum of roots =α21+β21=(αβ)2α2+β2=(αβ)2(α+β)2−2αβ)

=a2c2a2b2−a2c=c2b2−2ac\

product =α21β21=c2a2

∴ equation is c2x2+(2ac−b2)x+a2=0

(ii) aα+β1,aβ+α1

Sum ⇒a2αβ+α2a+aβ2+αβaβ+aα+β

⇒(a2+1)(αβ)+a(αβ)(α+β)(1+a)

⇒(a2+1)ac+a(a2b2−a2c)(1+a)(ab)

⇒(a2+1)c+a(b2−2ac)−(1+a)b

⇒c(1+a2)+ab2−(1+a)b

Product c(1−a2)+ab2a

∴(c(1−a2)+ab2)x2+(1+a)bx+a=0

(iii) α+β1,β+α1

Sum ⇒βαβ+1+ααβ+1

⇒αβα2β(αβ)+(α2+β

⇒a−b+c−b

−b[aca+c]

Product αβ(αβ+1)2

⇒a2ac(c+a)2

⇒(α+β)+αβαβ

[a+cac]x2+bx+(a+c)=0

Answered by UniqueBabe
0

ax2+bx+c=0

α+β=a−b αβ=ac

(i) equation whose roots are α21,β21

Sum of roots =α21+β21=(αβ)2α2+β2=(αβ)2(α+β)2−2αβ)

=a2c2a2b2−a2c=c2b2−2ac\

product =α21β21=c2a2

∴ equation is c2x2+(2ac−b2)x+a2=0

(ii) aα+β1,aβ+α1

Sum ⇒a2αβ+α2a+aβ2+αβaβ+aα+β

⇒(a2+1)(αβ)+a(αβ)(α+β)(1+a)

⇒(a2+1)ac+a(a2b2−a2c)(1+a)(ab)

⇒(a2+1)c+a(b2−2ac)−(1+a)b

⇒c(1+a2)+ab2−(1+a)b

Product c(1−a2)+ab2a

∴(c(1−a2)+ab2)x2+(1+a)bx+a=0

(iii) α+β1,β+α1

Sum ⇒βαβ+1+ααβ+1

⇒αβα2β(αβ)+(α2+β

⇒a−b+c−b

−b[aca+c]

Product αβ(αβ+1)2

⇒a2ac(c+a)2

⇒(α+β)+αβαβ

[a+cac]x2+bx+(a+c)=0

Similar questions