If alpha beta are the roots of the equation x^(2)+2x+4=0 then (1)/(alpha^(3))+(1)/(beta^(3)) is equal to (a) -(1)/(2) (b) (1)/(2) (c) 32 (d) (1)/(4)
Answers
- p(x) = x² + 2x + 4
- value of 1/α³ + 1/β³
p(x) = x² + 2x + 4
- a = 1
- b = 2
- c = 4
»★ Sum of zeroes = -b/a
- α + β = -2
»★ Product of zeroes = c/a
- αβ = 4
»» (α + β)² = α² + β² + 2αβ
»» α² + β² = (α + β)² - 2αβ
»» α² + β² = (-2)² - 2 × 4
»» α² + β² = 4 - 8
- »» α² + β² = -4
we know that,
- α³ + β³ = (α + β)(α² + β²- αβ)
Now,
Finding value of 1/α³ + 1/β³
So,
- ≫ Value of 1/α³ + 1/β³ = 4
p(x) = x² + 2x + 4
a = 1
b = 2
c = 4
»★ Sum of zeroes = -b/a
α + β = -2
»★ Product of zeroes = c/a
αβ = 4
»» (α + β)² = α² + β² + 2αβ
»» α² + β² = (α + β)² - 2αβ
»» α² + β² = (-2)² - 2 × 4
»» α² + β² = 4 - 8
»» α² + β² = -4
we know that,
α³ + β³ = (α + β)(α² + β²- αβ)
Now,
Finding value of 1/α³ + 1/β³
\begin{lgathered}\tt \rightarrowtail \: \frac{1}{ \alpha {}^{3} } + \frac{1}{ { \beta }^{3} } \\ \\ \tt \rightarrowtail \: \frac{ { \beta }^{3} + \alpha {}^{3} }{ (\alpha \beta ) {}^{3} } \\ \\ \tt \rightarrowtail \: \frac{( { \alpha } + \beta )( { \alpha }^{2} + { \beta }^{2} - \alpha \beta ) }{( \alpha \beta ) {}^{3} } .......(i) \\ \\ \tt \: substituting \: all \: values \: in \: (i)\end{lgathered}
↣
α
3
1
+
β
3
1
↣
(αβ)
3
β
3
+α
3
↣
(αβ)
3
(α+β)(α
2
+β
2
−αβ)
.......(i)
substitutingallvaluesin(i)
\begin{lgathered}\tt \rightarrowtail \: \frac{( { \alpha } + \beta )( { \alpha }^{2} + { \beta }^{2} - \alpha \beta ) }{( \alpha \beta ) {}^{3} } \\ \\ \tt \rightarrowtail \: \frac{( - 2)( - 4 - 4)}{4} \\ \\ \tt \rightarrowtail \: \frac{( - 2) \times (- 8)}{4} \\ \\ \tt \rightarrowtail \: \cancel\frac{16}{4} \\ \\ \rightarrowtail \boxed{ \bf \: 4}\end{lgathered}
↣
(αβ)
3
(α+β)(α
2
+β
2
−αβ)
↣
4
(−2)(−4−4)
↣
4
(−2)×(−8)
↣
4
16
↣
4
So,
≫ Value of 1/α³ + 1/β³ = 4