Math, asked by saquadri146, 3 months ago

if alpha beta are the roots of x square + bx + c is zero then the value of 1 by a into alpha + beta + 1 by a into beta + b is​

Attachments:

Answers

Answered by PharohX
3

Step-by-step explanation:

GIVEN :-

 \sf \:  \alpha  \: and \:  \beta  \: are \: the \: roots \: of \: the \: eq.

 \sf \:  {ax}^{2}  + bx + c = 0

TO FIND :-

 \sf \:  \frac{1}{a \alpha  + b}  +  \frac{1}{a \beta  + b}  =  \\

SOLUTION :-

 \sf \: Given \:  \:  Eq. -

 \sf \:  {ax}^{2}  + bx + c = 0

 \sf \: We \:  \:  know  \:  \: that -

 \sf \: Sum \:  \:  of \:  \:  roots =  (  \alpha  + \beta ) =  \frac{ - b}{a}  \\

 \sf \: Product  \:  \: of \:  \:  roots = ( \alpha  \beta ) =  \frac{c}{a}  \\

 \sf \: Now \:  \:  solving \:  \:  the \:  \:  sum \:  \:  of  \:  \: roots -

 \sf \:  \alpha  +  \beta  =  \frac{ - b}{a}  \\

 \implies \sf - b = a( \alpha  +  \beta )

 \implies \sf   b =  - a( \alpha  +  \beta ) \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: ......(i)

 \sf \: According  \:  \: to  \:  \: Question :

 \sf \:  \frac{1}{a \alpha  + b}  +  \frac{1}{a \beta  + b}    \\

  = \sf \:  \frac{1}{a \alpha   - a( \alpha  +  \beta )}  +  \frac{1}{a \beta   - a( \alpha  +  \beta )}    \\

  = \sf \:  \frac{1}{a \alpha   - a\alpha   -   a\beta }  +  \frac{1}{a \beta   - a\alpha   -   a\beta }    \\

  = \sf \:  \frac{1}{ \cancel{a \alpha}   -  \cancel{a\alpha}   -   a\beta }  +  \frac{1}{ \cancel{a \beta}   - a\alpha   -  \cancel{  a\beta } }   \\

 =  \sf \:  \frac{1}{ - a \beta }  +  \frac{1}{ - a \alpha   }  \\

 =  \sf \:  -  \frac{1}{a}  \bigg( \frac{1}{ \beta }  +  \frac{1}{ \alpha }  \bigg) \\

 \sf =  -  \frac{1}{a}  \bigg( \frac{ \alpha  +  \beta }{ \alpha  \beta } \bigg ) \\

 \sf \: Now \:  \:  putting \:  \:  the  \:  \: values -

  \large\ \sf =  -  \frac{1}{a}  \bigg( \frac{  \frac{ - b}{a} }{  \frac{c}{a}  } \bigg ) \\

 =  \sf \:  -  \frac{1}{a}  \times  \frac{ - b}{a}  \times  \frac{a}{c}  \\

 \sf \:  =  \frac{b}{ac}  \\

 \boxed{ \sf \:  \frac{1}{a \alpha  + b}  +  \frac{1}{a \beta  + b}  =  \: \frac{b}{ac} }  \\

Similar questions