Math, asked by parineetasakshi6469, 10 months ago

If alpha,beta are the roots of x2 + 3x = 5 , calculate the value of alpha raise to power 4 plus beta raise to power 4.

Answers

Answered by BrainlyConqueror0901
26

{\bold{\underline{\underline{Answer:}}}}

{\bold{\alpha^{4}+\beta^{4}=\frac{81}{8}}}

{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

 \underline \bold{Given : } \\  \implies  \alpha  \: and \:  \beta  \in( {x}^{2}  + 3x - 5 = 0) \\  \\ \underline \bold{To \: Find : } \\  \implies  { \alpha }^{4}  +   { \beta }^{4}  = ?

• According to given question :

 \bold{Using \: quadratic \: formula : } \\  \implies x =  \frac{ - b \pm \sqrt{ {b}^{2} - 4ac } }{2a}  \\  \\  \implies x =  \frac{ - 3 \pm \sqrt{ {3}^{2} - 4 \times 1 \times ( - 5) } }{2 \times 1}  \\  \\  \implies x =  \frac{ - 3 \pm \sqrt{9 + 20} }{2}  \\  \\  \implies x =  \frac{ - 3 \pm \sqrt{29} }{2}  \\  \\    \bold{\implies  \alpha  =  \frac{ - 3  +  \sqrt{29} }{2} } \\  \\   \bold{\implies  \beta  =  \frac{ - 3 -  \sqrt{29} }{2} } \\  \\  \bold{For \: finding \: value : }  \\  \implies   { \alpha }^{4}   +  { \beta }^{4}  =  ({ \frac{ - 3  +  \sqrt{29} }{2} })^{4}  +  ({ \frac{ - 3 -  \sqrt{29} }{2} })^{4}  \\  \\ \implies   { \alpha }^{4}   +  { \beta }^{4}  =  \frac{ ({ - 3})^{4}  +  ({ \sqrt{29} })^{4} }{ {2}^{4} }  + \frac{ ({ - 3})^{4}   -  ({ \sqrt{29} })^{4} }{ {2}^{4} }  \\  \\ \implies{ \alpha }^{4}   +  { \beta }^{4} =  \frac{81 +29 \times 29 }{16}  +  \frac{81 - 29 \times 29}{16}  \\  \\ \implies  { \alpha }^{4}   +  { \beta }^{4} =  \frac{81 \cancel{+ 841} + 81 \cancel{- 841}}{16}  \\  \\ \implies  { \alpha }^{4}   +  { \beta }^{4} =  \frac{162}{16}  \\  \\  \bold{ \implies { \alpha }^{4}   +  { \beta }^{4} =  \frac{81}{8} }

Answered by Anonymous
58

\huge\sf{Answer:-}

Given Question:-

If alpha,beta are the roots of x2 + 3x = 5 , calculate the value of alpha raise to power 4 plus beta raise to power 4.

Find:-

We have to find what is α^4 + β^4

\bf{By \:Using \:Quadratic\: Formula}

\sf x =  \frac{ - b± \sqrt{b {}^{2}  - 4ac} }{2a}

\sf x =  \frac{ - 3± \sqrt{3 {}^{2} - 4 \times 1 \times ( - 5) } }{2 \times 1}

\sf x =  \frac{3±  \sqrt{9 + 20}  }{2}

\sf x =  \frac{ - 3± \sqrt{29} }{2}  =  \beta  =   \frac{ - 2 -  \sqrt{29} }{2}

Adding Values:-

\sf  =  \alpha  {}^{4}  +  \beta  {}^{4}  =  ( \frac{ - 3 +  \sqrt{29} }{2}) {}^{4} + ( \frac{ - 3 -  \sqrt{29} }{2}  ) {}^{4}

\sf =  \alpha  {}^{4}  +  \beta  {}^{4} = ( \frac{ (- 3) {}^{4}  + ( \sqrt{29) {}^{4} } }{2 {}^{4} }  ) +( \frac{ - 3 -  \sqrt{29) {}^{4} } }{2 {}^{4} }

\sf =  \alpha  {}^{4}  +  \beta  {}^{4} =  \frac{(8 + 29 \times 29)}{16}  +  \frac{(18 - 29 \times 29)}{16}

\sf =  \alpha  {}^{4}  +  \beta  {}^{4} =  \frac{(81 + 841 + 81 - 841)}{16}

\sf =  \alpha  {}^{4}  + b {}^{4}  =  \frac{162}{16}

\sf  = \alpha  {}^{4}  +  \beta  {}^{4} =  \frac{81}{8}

\sf\color{red}{Nayan}\sf\color{blue}{Shreyas ....}

Similar questions