if alpha beta are the zero of the quadratic polynomial f(x)=x^2-x-2 , find a polynomial whose zeroes are 2alpha +1, 2 beta+1
Answers
Answered by
3
For polynomial f(x)=ax2+bx+cf(x)=ax2+bx+c
Sum of roots =−ba=−ba
Product of roots =ca=ca
f(x)=x2−x−2f(x)=x2−x−2
Roots =α,β=α,β
α+β=1α+β=1
α×β=−2α×β=−2
g(x)=ax2+bx+cg(x)=ax2+bx+c
Roots =2α+1,2β+1=2α+1,2β+1
Sum of roots =(2α+1)+(2β+1)=2(α+β)+2=2(1)+2=4=(2α+1)+(2β+1)=2(α+β)+2=2(1)+2=4
Product of roots =(2α+1)(2β+1)=4αβ+2(α+β)+1=(2α+1)(2β+1)=4αβ+2(α+β)+1
=4(−2)+2(1)+1=−5=4(−2)+2(1)+1=−5
g(x)=x2−4x−5g(x)=x2−4x−5
Alternate method:
g(x)=x2−x−2=0g(x)=x2−x−2=0
(x−2)(x+1)=0(x−2)(x+1)=0
x=2,−1x=2,−1
g(x)g(x) has roots 2(2)+1=52(2)+1=5 and 2(−1)+1=−12(−1)+1=−1
g(x)=(x−5)(x+1)g(x)=(x−5)(x+1)
g(x)=x2−4x−5g(x)=x2−4x−5
Sum of roots =−ba=−ba
Product of roots =ca=ca
f(x)=x2−x−2f(x)=x2−x−2
Roots =α,β=α,β
α+β=1α+β=1
α×β=−2α×β=−2
g(x)=ax2+bx+cg(x)=ax2+bx+c
Roots =2α+1,2β+1=2α+1,2β+1
Sum of roots =(2α+1)+(2β+1)=2(α+β)+2=2(1)+2=4=(2α+1)+(2β+1)=2(α+β)+2=2(1)+2=4
Product of roots =(2α+1)(2β+1)=4αβ+2(α+β)+1=(2α+1)(2β+1)=4αβ+2(α+β)+1
=4(−2)+2(1)+1=−5=4(−2)+2(1)+1=−5
g(x)=x2−4x−5g(x)=x2−4x−5
Alternate method:
g(x)=x2−x−2=0g(x)=x2−x−2=0
(x−2)(x+1)=0(x−2)(x+1)=0
x=2,−1x=2,−1
g(x)g(x) has roots 2(2)+1=52(2)+1=5 and 2(−1)+1=−12(−1)+1=−1
g(x)=(x−5)(x+1)g(x)=(x−5)(x+1)
g(x)=x2−4x−5g(x)=x2−4x−5
Answered by
4
Answer:
X^2 -4X -5 = 0
Step-by-step explanation:
2alpha +1, 2 beta+1 are root so
(X - 1 -2alhpa)(X-1 -2beta) = 0
(X-1)^2 -2(X-1)(alhpa + beta) + 4alphabeta = 0
X^2 +1 - 2X -2X(alpha+beta) +2(alpha+beta) + 4alphabeta = 0
Now getting alpha+ beta and alphabeta from given equation
X^2 - X - 2 = 0
Alpha + beta = 1
Alphabeta = -2
Putting these values in equation
X^2 +1 - 2X -2X(1) +2(1) + 4(-2) = 0
X^2 -4X -5 = 0
Similar questions
Science,
6 months ago
Science,
6 months ago
Math,
1 year ago
Math,
1 year ago
Social Sciences,
1 year ago