if alpha, beta are the zeroes of ax^2+bx+c, then find 1/alpha^2+1/beta^2
Anupamasrimaa:
I know the answer
Answers
Answered by
5
Answer :
The polynomial is (ax² + bx + c).
Since, α and β are the zeroes of this polynomial,
α + β = -b/a ...(i)
and
αβ = c/a ...(ii)
Now,
1/α² + 1/β²
= (β² + α²)/(α²β²)
= {(α + β)² - 2αβ}/(αβ)²
= {(-b/a)² - 2(c/a)}/(c/a)², by (i) and (ii)
= (b²/a² - 2c/a)/(c²/a²)
= {(b² - 2ca)/a²}/(c²/a²)
= (b² - 2ca)/c²
#MarkAsBrainliest
The polynomial is (ax² + bx + c).
Since, α and β are the zeroes of this polynomial,
α + β = -b/a ...(i)
and
αβ = c/a ...(ii)
Now,
1/α² + 1/β²
= (β² + α²)/(α²β²)
= {(α + β)² - 2αβ}/(αβ)²
= {(-b/a)² - 2(c/a)}/(c/a)², by (i) and (ii)
= (b²/a² - 2c/a)/(c²/a²)
= {(b² - 2ca)/a²}/(c²/a²)
= (b² - 2ca)/c²
#MarkAsBrainliest
Similar questions
Math,
8 months ago
Accountancy,
8 months ago
Hindi,
1 year ago
Science,
1 year ago
Science,
1 year ago