Math, asked by ABHIGNAPARUPALLI17, 11 months ago

if alpha,beta are the zeroes of ax2+bx+c then find alpha5+beta5

Answers

Answered by rishu6845
16

Answer:

 { \alpha }^{5}  \:  +  \:  { \beta }^{5}  =  \dfrac{b( {b}^{2} - 2ac) \: (3ac -  {b}^{2}) + b {a}^{2} {c}^{2}    }{  {a}^{5}  }

Step-by-step explanation:

Given--->

 \alpha  \: and \:  \beta  \: are \: zeroes \: of \:  \\ a  {x}^{2}  + bx + c

To find ---->

value \: of \:  \: ( \:  { \alpha }^{5} +  { \beta }^{5} \: )

Concept used--->

1)

if \:  \: a {x}^{2} \:  + bx \:  +  \: c \: is \: a \: quadratic  \: polynomial \: then \\ sum \: of \: zeroes \:  =  -  \dfrac{b}{a}  \\ product \: of \: zeroes \:  =  \dfrac{c}{a}

2)

( { \alpha }^{2} +  { \beta }^{2}) \: ( { \alpha }^{3}  +  { \beta }^{3}) =  { \alpha }^{5} +  { \alpha }^{2} { \beta }^{3} +  { \beta }^{2} { \alpha }^{3}   +  { \beta }^{5} \\   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  = { \alpha }^{5} +  { \beta }^{5} +  { \alpha }^{2}  { \beta }^{2}( \alpha  +  \beta ) \\  = > ( { \alpha }^{5}  +  { \beta }^{5}) = ( { \alpha }^{2} +  { \beta }^{2})( { \alpha }^{3}  +  { \beta }^{3}) -  { \alpha }^{2} { \beta }^{2}( \alpha  +  \beta )

Solution---->

a {x}^{2}  + bx + c

so

 \alpha  +  \beta  =  -  \dfrac{b}{a}

 \alpha  \beta  =  \dfrac{c}{a}

now

 { \alpha }^{2} +  { \beta }^{2} =  ({ \alpha }^{2}  +  { \beta }^{2} + 2 \alpha  \beta)  - 2 \alpha  \beta

 { \alpha }^{2}  +  { \beta }^{2} =  {( \alpha  +  \beta )}^{2}   - 2 \alpha  \beta

 { \alpha }^{2}  +  { \beta }^{2}  =  {( -  \dfrac{b}{a}) }^{2}  - 2 ( \: \dfrac{c}{a} \: )

 { \alpha }^{2}  +  { \beta }^{2} =  \dfrac{ {b}^{2} }{ {a}^{2} } -  \dfrac{2c}{a}

 { \alpha }^{2} +  { \beta }^{2}  =  \dfrac{ {b}^{2} - 2ac }{ {a}^{2} }

now

 { \alpha }^{3}  +  { \beta }^{3} = ( \alpha  +  \beta ) \: ( { \alpha }^{2} +  { \beta }^{2}  -  \alpha  \beta )

 = ( \:  -  \dfrac{b}{a}  \: ) \: ( \:  \dfrac{ {b}^{2} - 2ac }{ {a}^{2} } -  \dfrac{c}{a}   \: )

 = ( \:  -  \dfrac{b}{a} \: ) \: ( \:  \dfrac{ {b}^{2} - 2ac - ac }{ {a}^{2} }  \: )

 =  -  \dfrac{b \: ( \:  {b}^{2} - 3ac \: ) }{ {a}^{3} }

 =  \dfrac{b \: (3ac \:  -  {b}^{2} \: ) }{ {a}^{3} }

now

( \:  { \alpha }^{5} \:  +  { \beta }^{5}  \: )

 = ( \:  { \alpha }^{2} +  { \beta }^{2} \: ) \: ( { \alpha }^{3}  +  { \beta }^{3} ) -  {( \alpha  \beta) }^{2}  \: ( \:  \alpha  +  \beta  \: )

 =  ( \dfrac{ {b}^{2} - 2ac }{ {a}^{2} } )  \: \dfrac{b \: (3ac -  {b}^{2}) }{ {a}^{3} }  -  {( \:  \dfrac{c}{a} \:  )}^{2} \: ( -  \dfrac{b}{a} )

 =  \dfrac{b( {b}^{2} - 2ac) \: (3ac -  {b}^{2})  }{ {a}^{5} }  +  \dfrac{b {c}^{2} }{ {a}^{3} }

 =  \dfrac{b \: ( {b}^{2}  - 2ac) \: (3ac -  {b}^{2}) + b {a}^{2} {c}^{2}   }{ {a}^{5} }

Similar questions