Math, asked by sejaltembhare2329, 9 months ago

If alpha,beta are the zeroes of quadratic polynomial x2-7x+10,find the value of alpha+beta

Answers

Answered by Vamprixussa
5

Given equation

x^{2} -7x+10=0

Solving, we get,

x^{2} -7x+10=0

\implies x^{2} -2x-5x+10=0

\implies x(x-2)-5(x-2)=0

\implies (x-5)(x-2)=0

Now,

x-5=0\\\implies x = 5

x-2=0\\\implies  x=2

Let α and β be 5 and 2 respectively

\implies \alpha +\beta

\implies 5+2

\implies \boxed{\boxed{\bold{7}}}}

                                                   

Answered by Anonymous
90

Question :

If alpha,beta are the zeroes of quadratic polynomial x^2-7x+10,find the value of alpha+beta.

Theory :

If   \sf \alpha  \: and \:  \beta

are zeroes of quadratic polynomial

 \sf \: f(x) =  {x}^{2}  + bx + c

Then , \sf \:  \alpha  +  \beta  =  \dfrac{ -  cofficient \: of \: x}{cofficient \: of \: x {}^{2} }

 \sf \: and \:  \alpha  \beta  =  \dfrac{constant}{cofficient \: of \: x {}^{2} }

Solution :

Let  \sf \: f(x) = x {}^{2}  - 7x + 10

Given alpha and beta are zeroes of f(x)

we have to find the value of alpha+ beta

 \sf \:  \alpha  +  \beta  =  \frac{ - cofficient \: of \: x}{cofficient \: of \: x {}^{2} }

 \sf \implies \:  \alpha  +  \beta  =  \dfrac{ - ( - 7)}{1}  = 7

Similar questions