Math, asked by aneekethn, 11 months ago

If alpha beta are the zeroes of the polynomial 3x^2 + 11x - 4, then the value of alpha^2 + beta ^2 is

Answers

Answered by has42000
15

Answer:

\frac{145}{9}

Step-by-step explanation:

Attachments:
Answered by Anonymous
21

GIVEN :

 \alpha  \: and \:  \beta  \: are \: zeros \: of \: the \: polynomial \\ 3 {x}^{2}  + 11x - 4.

To FIND :

 { \alpha }^{2}  +  { \beta }^{2}

SOLUTION :

We have,

f(x) = 3 {x}^{2}  + 11x - 4

For, a quadratic equation in the form ax²+bx+c, we know

( \alpha  +  \beta ) = -   \frac{b}{a}

( \alpha  \beta ) =  \frac{c}{a}

Then, in 3x²+11x - 4; a =3, b =11 & c = - 4,

 \alpha  +  \beta  =  -  \frac{11}{3}

 \alpha  \beta  =  -  \frac{ 4}{3}

On solving,

 {( \alpha  +  \beta )}^{2}  =  { \alpha }^{2}  +  { \beta }^{2} +  2 \alpha  \beta

 { ( - \frac{11}{3} )}^{2}  =  { \alpha }^{2}  +  { \beta }^{2}  + 2(  - \frac{4}{ 3} )

 \frac{121}{9}  =  { \alpha }^{2}  +  { \beta }^{2}  -  \frac{8}{3}

 \frac{121}{9}  +  \frac{8}{3}  =  { \alpha }^{2}  +  { \beta }^{2}

 \frac{363 + 72}{9\times 3}  =  { \alpha }^{2}  +  { \beta }^{2}

 \frac{145}{9}  =  { \alpha }^{2}  +  { \beta }^{2}

Similar questions