Math, asked by shivansh200515, 9 months ago

if alpha beta are the zeroes of x^ -2x -1 form a quadratic polynomial whose zeroes are 2alpha -1 and 2beta -1​

Answers

Answered by Antiquebot
6

Answer:

,

Step-by-step explanation:

HERE'S YOUR answer BRO

PLEASE MARK ME AS BRAINLIEST AND FOLLOW ME AND THANK ME AND DON'T FORGET TO GIVE ME MORE POINTS.....PLEASE

Attachments:
Answered by Anonymous
17

Solution :

\bf{\red{\underline{\bf{Given\::}}}}

If α and β are the zeroes of x² - 2x - 1 form a quadratic polynomial whose zeroes are 2α - 1 and 2β - 1.

\bf{\red{\underline{\bf{To\:find\::}}}}

A quadratic polynomial.

\bf{\red{\underline{\bf{Explanation\::}}}}

We have p(x) = x² - x - 1

Zero of the polynomial p(x) = 0

So;

As we know that given polynomial compared with ax² + bx + c

  • a = 1
  • b = -2
  • c = -1

\underline{\pink{\mathcal{SUM\:OF\:ZEREOS\::}}}

\longrightarrow\sf{\alpha +\beta =\dfrac{-b}{a} }\\\\\\\longrightarrow\sf{\alpha +\beta =\dfrac{-(-2)}{1} }\\\\\\\longrightarrow\bf{\alpha +\beta =2}}

\underline{\pink{\mathcal{PRODUCT\:OF\:ZEREOS\::}}}

\longrightarrow\sf{\alpha \times \beta =\dfrac{c}{a} }\\\\\\\longrightarrow\sf{\alpha \times \beta =\dfrac{-1}{1} }\\\\\\\longrightarrow\bf{\alpha \times \beta =-1}}

A/q

\dag\underline{\underline{\bf{Sum\:of\:the\:zeroes\::}}}}}

\longrightarrow\sf{2\alpha \cancel{-1}+2\beta \cancel{-1}}\\\\\\\longrightarrow\sf{2\alpha +2\beta }\\\\\\\longrightarrow\sf{2(\alpha +\beta )}\\\\\\\longrightarrow\sf{2(2)}\\\\\\\longrightarrow\sf{\orange{4}}

\dag\underline{\underline{\bf{Product\:of\:the\:zeroes\::}}}}}

\longrightarrow\sf{(2\alpha -1)(2\beta -1)}\\\\\\\longrightarrow\sf{4\alpha \beta -2\alpha -2\beta +1}\\\\\\\longrightarrow\sf{4\alpha \beta -2(\alpha +\beta )+1}\\\\\\\longrightarrow\sf{4(-1)-2(2)+1}\\\\\\\longrightarrow\sf{\cancel{-4-4} +1}\\\\\\\longrightarrow\sf{\orange{1}}

Thus;

\dag\underline{\underline{\bf{The\:required\:quadratic\:polynomial\::}}}}}

\mapsto\sf{x^{2} -(sum\:of\:zeroes)x+(product\:of\:zeroes)}\\\\\mapsto\sf{x^{2} -(4)x+1}\\\\\mapsto\sf{\orange{x^{2} -4x+1=0}}

Similar questions