Math, asked by jenifersima3654, 10 months ago

If alpha beta are the zeros of px is equal to x square - 2 x + 3 - 1 + 1

Answers

Answered by amitkumar44481
2

 \bold \red \star \:  \underline{Given:-} \begin{cases} \sf{ \underline{Zero \:  of :-}}  \\ \sf{ \alpha  \:  \: and \:  \:  \beta } \\  \sf{ - 1 \:  \: and \:  \: 1} \end{cases}

 \\ \\ \bold \red \star \:  \large\underline{Solution:-}

Our \:    \gray{\underline{Equation }}\:  Given \\  \\P( \pink{x}) =  {x}^{2}  - 2x + 3. \\  \\  \{ \therefore  \:  \: where \: as \:  \: P( \pink{x})  =  - 1 .\}

 \underline{Case} \:   \red{1 .}\\  \\   {x}^{2}  - 2x + 3. \\  \\   \implies \:  { - 1}^{2}  - 2( - 1) + 3. \\  \\  \implies \: 1 + 2 + 3. \\  \\  \implies \:  \red{6.}\\ \\

_____________________________________

\underline{Case} \:   \blue{2.} \\  \\

P( \pink{x}) =  {x}^{2}  - 2x + 3. \\  \\  \{ \therefore  \:  \: where \: as \:  \: P( \pink{x})  =  1 .\} \\  \\

 {x}^{2}  - 2x + 3. \\  \\  \implies \:  {1}^{2}  - 2(1) + 3. \\  \\ \implies \: 1 - 2 + 3. \\  \\ \implies \:  \blue{2.}

Similar questions