Math, asked by devvalecha2412pazqrr, 1 year ago

if alpha beta are the zeros of the equation X square + bx + c then find one upon Alpha square plus one upon beta square

Answers

Answered by sarvag
1
x^2+bx+c
Let alpha=a
". beta=b

1/a^2+1/b^2
b^2+a^2÷a^2b^2
=(a+b)^2-2ab÷c.
=(-b)^2-2c÷c
=b^2-2c÷c
Answered by nandikapatel18
0

Answer:

  • Pls mark me the brainliest

Step-by-step explanation:

ax²+bx+c=0

Therefore α+β=-b/a

αβ=c/a

Now α²/β+β²/α

=(α³+β³)/αβ

={(α+β)³-3αβ(α+β)}/αβ

={(-b/a)³ -3×(c/a)×(-b/a)}/(c/a)

={-b³/a³+3bc/a²}/(c/a)

=(3abc-b³/a³)×(a/c)

=(3abc-b³)/a²c

Similar questions