Math, asked by ashwinibhanu12345678, 10 months ago

If alpha beta are the zeros of the polynomial x2 -x+6 then find the value of i) 1/alpha+1/beta

Answers

Answered by Anonymous
12

\setlength{\unitlength}{1.0 cm}}\begin{picture}(12,4)\thicklines\put(1,1){\line(1,0){6.5}}\put(1,1.1){\line(1,0){6.5}}\end{picture}

\setlength{\unitlength}{1.0 cm}}\begin{picture}(12,4)\thicklines\put(1,1){\line(1,0){6.5}}\put(1,1.1){\line(1,0){6.5}}\end{picture}

❚ QuEstiOn ❚

# If \alpha and \beta are the zeros of the polynomial f(x)=X² -X+6

Then find the value of (\dfrac{1}{\alpha}+\dfrac{1}{\beta}) = ?

\setlength{\unitlength}{1.0 cm}}\begin{picture}(12,4)\thicklines\put(1,1){\line(1,0){6.5}}\put(1,1.1){\line(1,0){6.5}}\end{picture}

❚ ANsWeR ❚

✺ Given :

  • zeroes are \alpha and \beta

✺ To FinD:

  • (\dfrac{1}{\alpha}+\dfrac{1}{\beta}) = ?

✺ Explanation :

\setlength{\unitlength}{1.0 cm}}\begin{picture}(12,4)\thicklines\put(1,1){\line(1,0){6.5}}\end{picture}

If \alpha and \beta are the Zeroes of the Polynomial P(X) then it can be written as ,

- (\alpha+\beta)X + (\alpha\beta)

\setlength{\unitlength}{1.0 cm}}\begin{picture}(12,4)\thicklines\put(1,1){\line(1,0){6.5}}\end{picture}

Now comparing the polynomial f(X)=X² -X+6 with X²- (\alpha+\beta)X + (\alpha\beta) we get ,

:\longrightarrow (\alpha+\beta) = 1

:\longrightarrow \alpha\beta = 6

\therefore \:\:\:\ \ {\dfrac{1}{\alpha}+\dfrac{1}{\beta}}

\implies \ \ {\dfrac{1}{\alpha}+\dfrac{1}{\beta}}

\implies \ \ {\dfrac{\beta+\alpha}{\alpha\beta}}

\implies \ \ {\dfrac{\alpha+\beta}{\alpha\beta}}

( putting the values of (\alpha+\beta)=1 and  \alpha\beta=6)

\implies \ \ {\dfrac{1}{6}}

✺ Therefore :

 \ \ {\boxed{\red{\dfrac{1}{\alpha}+\dfrac{1}{\beta}=\dfrac{1}{6}}}}

\setlength{\unitlength}{1.0 cm}}\begin{picture}(12,4)\thicklines\put(1,1){\line(1,0){6.5}}\put(1,1.1){\line(1,0){6.5}}\end{picture}

\setlength{\unitlength}{1.0 cm}}\begin{picture}(12,4)\thicklines\put(1,1){\line(1,0){6.5}}\put(1,1.1){\line(1,0){6.5}}\end{picture}

Answered by Saby123
8

If , α and β are the Zeroes of the Polynomial P(X) then it can be written as ,

=> X²- (α+β) X + (αβ)

Now comparing the polynomial f(X)=X² -X+6 with X²- (α+β) X + (αβ) we get ,

⟶(α+β) = 1

⟶αβ = 6

</p><p>\tt{\red{\therefore{\dfrac{1}{\alpha}+\dfrac{1}{\beta}}}}}

</p><p>\tt{\blue{\implies \ \ {\dfrac{\alpha+\beta}{\alpha\beta}} = \dfrac{1}{6}}}

</p><p> {\boxed{\orange{\dfrac{1}{\alpha}+\dfrac{1}{\beta}=\dfrac{1}{6}}}}

Similar questions