Math, asked by yogasripandiyarajan, 1 year ago

if alpha beta are the zeros of the quadratic polynomial f(x)=kx^2 +4x+4 such that alpha square + beta square=24, find the value of k


Anonymous: her ans is wrong

Answers

Answered by Anonymous
8

hope it helps.........

Attachments:

AceScholar: really good answer
Answered by Anonymous
5

heya \\  \\  \\  \alpha  +  \beta  =  - 4 \div k \\  \\  \\ and \\  \\  \\  \\  \alpha  \beta  = 4 \div k \\  \\  \\  \\  \alpha  {}^{2}  +  \beta  {}^{2}  = ( \alpha  +  \beta ) {}^{2}  - 2 \alpha  \beta   = 24\\  \\  \\   ( \alpha  +  \beta ) {}^{2}  - 2 \alpha  \beta  = 24 \\  \\  \\ (16 \div k {}^{2} ) - 2(4  \div k) = 24 \\  \\  \\ 16k  - 8k {}^{2} =  24k {}^{3}  \\  \\  \\  \\ 24k { }^{3}  + 8k {}^{2}  - 16k = 0 \\  \\  \\ k = 0  \:  \:  \: or \:  \:  \:  \:  \: 3k {}^{2}  + k {}^{2}  - 2 = 0 \\  \\  \\  \\ 3k {}^{2}   + 3k - 2k - 2 = 0 \\  \\  \\ k =  - 1 \:  \:  \:  \: or \:  \:  \:  \: k = 2 \div 3

Similar questions