Math, asked by khushi809, 1 year ago

if alpha, beta are the zeros of x^2+px+a find the value of (alpha/beta+2) (beta/alpha+2)

Answers

Answered by Aurora34
3
Given:

 {x}^{2}  + px + a
here,

→ a= 1 , b= p and c= a

we know that,

sum of zeroes = -b/a

 \alpha  +  \beta  =  - p

____________________(1)

Also,

product of zeroes= c/a

 \alpha  \times  \beta  = a
______________________(2)

now, we have to find the value of :

( \frac{ \alpha }{ \beta } + 2)( \frac{ \beta }{ \alpha }  + 2) \\  \\  = ( \frac{ \alpha  + 2 \beta }{ \beta })( \frac{ \beta  + 2 \alpha }{ \alpha }  ) \\  \\  =  \frac{( \alpha  + 2 \beta )( \beta  + 2 \alpha )}{ \beta  \times  \alpha }   \\  \\  =  \frac{ \alpha  \beta  + 2 { \alpha }^{2} + 2 { \beta }^{2} + 4 \beta  \alpha   }{ \alpha  \beta }  \\  \\  = \frac{ \alpha  \beta  + 2( { \alpha }^{2} +  { \beta }^{2}   )+ 4 \beta  \alpha   }{ \alpha  \beta }

using identity ,

 {x}^{2}  +  {y}^{2}  = (x  + y)^{2} - 2xy

 \frac{ \alpha  \beta  + 2[( \alpha  +  \beta )^{2}- 2 \alpha  \beta] + 4 \beta  \alpha   }{ \alpha  \beta }
from (1) & (2) , we have,

  =  \frac{ - p + 2[( - p)^{2} - 2a] + 4a }{a } \\  \\  =  \frac{ - p + 2( {p}^{2}  - 2a) + 4a}{a}  \\  \\  =  \frac{ - p + 2 {p}^{2} - 4a + 4a }{a} \\  \\  =  \frac{2 {p}^{2} - p }{a}   \\  \\  =  \frac{p(2p - 1)}{a}
__________________________



Subodhani: What are alpha beta gama
Aurora34: they are greek letters
Subodhani: Thanks
Similar questions