Math, asked by dhruvanthbreddy666, 10 months ago

if alpha beta are the zeros of x square - 4 x + 1 then one by Alpha cube plus one by beta cube equals​

Answers

Answered by Cosmique
6

\boxed{\red{\frak{question}}}

 \tt \: if \:  \alpha and \:  \beta  \: are \: zeroes \: of \:  \\ \tt \:  {x}^{2} - 4x + 1 \: then \: find \\ \tt \:  \frac{1}{ { \alpha }^{3} }   +  \frac{1}{ { \beta }^{3} } .

\boxed{\red{\frak{solution}}}

\tt \: comparing \:  {x}^{2}  - 4x + 1 \: with \:  \\ \tt \: a {x}^{2} + bx + c \:  \\ \tt \: we \: will \: get \\  \\ \tt \: a = 1 \\ \tt \: b =  - 4 \\ \tt \: c = 1

As we know,

\tt \: sum \: of \: zeroes \:  =  \frac{ - b}{a}  \\  \\ \tt \:  \alpha  +  \beta  =  \frac{ - ( - 4)}{1}  =  4 \:  \:  -  - eqn(1)

also,

 \tt \: product \: of \: zeroes \:  =  \frac{c}{a}  \\  \\ \tt \:  \alpha  \beta  =  \frac{1}{1}  = 1 \:  \:  -  -  - eqn(2)

\tt \: we \: have \: to \: find \\  \\ \tt \:  \frac{1}{ { \alpha }^{3} } +  \frac{1}{  { \beta }^{3}  }   \\  \\ \tt \: taking \: lcm \\  \\  \frac{ { \alpha }^{3} +  { \beta }^{3}  }{ { \alpha }^{3} { \beta }^{3}  }  \\  \\ \tt \: using \: identity \:  \\ \tt \:  {x}^{3}   +  {y}^{3}  =  {(x + y)}^{3}  - 3xy(x + y) \\  \\ \tt \:  =  \frac{ { (\alpha  +  \beta) }^{3} - 3 \alpha  \beta ( \alpha  +  \beta ) }{( { \alpha  \beta) }^{3} }  \\  \\ \tt \: using \: eqn(1) \: and \: eqn(2) \\  \\  \tt \:   =  \frac{ {4}^{3} - 3(1)(4) }{ {1}^{3} }  \\  \\ \tt \:  =  \frac{64 - 12}{1}  = 52

Similar questions