Math, asked by anujiby2, 11 months ago

If alpha ,beta are zeroes of the quadratic polynomial p (y) =3y^2-6y+4. Find the value of alpha by beta + beta by alpha +2×( one by alpha +one by beta)+ 3 alpha ×beta

Answers

Answered by mdatifnasim70mp64jpe
3

Answer:

2\left(\frac{\alpha}{\beta}+\frac{\beta}{\alpha}\right)+2\left(\frac{1}{\alpha}+\frac{1}{\beta}\right)+3\alpha\beta\\=8

Step-by-step explanation:

Given\: \alpha \:and\:\beta\\are\: zeroes\:of\:3x^{2}-6x+4

compare this with ax²+bx+c,we get

a = 3, b=-6, c=4,

i) Sum\:of \:the \: zeroes\\=\frac{-b}{a}\\=\frac{-(-6)}{3}\\=\frac{6}{3}\\\alpha+\beta=2 --(1)

ii) Product\:of\:the\: zeroes\\=\frac{c}{a}\\=\\alpha\beta=\frac{4}{3}---(2)

iii)\alpha^{2}+\beta^{2}\\=\left(\alpha+\beta\right)^{2}-2\alpha\beta\\=\left(2\right)^{2}-2\times \frac{4}{3}\\=4-\frac{8}{3}\\=\frac{12-8}{3}\\=\frac{4}{3}--(3)

Now,\\2\left(\frac{\alpha}{\beta}+\frac{\beta}{\alpha}\right)+2\left(\frac{1}{\alpha}+\frac{1}{\beta}\right)+3\alpha\beta\\

=2\left(\frac{\alpha^{2}+\beta^{2}}{\alpha\beta}\right)+2\left(\frac{\beta+\alpha}{\alpha\beta}\right)+3\alpha\beta\\=2\left(\frac{\frac{4}{3}}{\frac{4}{3}}\right)+2\left(\frac{2}{\frac{4}{3}}\right)+3\times \frac{4}{3}

=2\times 1+2\times \frac{3}{2}+3

=2+3+3\\=8

•••♪

Answered by Dhruv4886
1

α/β + β/α +2×(1/α +1/β)+ 3 α×β = 9

Given:

α, β are the zeroes of the quadratic polynomial p(y) =3y²- 6y+4  

To find:

The value of α/β + β/α +2×(1/α +1/β)+ 3 α×β

Solution:

Given p(y) = 3y²- 6y+4  and α, β are zeros

Compere given equation with ay²+by+c = 0

⇒ a = 3, b = -6 and c = 4

As we know sum of zero = -b/a  

And product of zeros = c/a  

⇒ α + β = -(-6)/3 = 2 ----(1)

⇒ α β = 4/3 ---(2)

Now find the value α/β + β/α +2×(1/α +1/β)+ 3 α×β using above values

α/β + β/α +2×(1/α +1/β)+ 3 α×β  

⇒ (α²+β²)/αβ + 2(β+α)/αβ + 3αβ  

From algebraic identity a²+b² = (a+b)²-2ab  

⇒ (α+β)²- 2αβ /αβ + 2(β+α)/αβ + 3αβ  

Now substitute α + β = 2 and αβ = 4/3 in above expression

⇒ (2)²- 2(4/3)/ 4/3 + 2(2)/ 4/3  + 3(4/3)

⇒ 4 - 8/3 / 4/3 + 4 / 4/3  + 4

⇒  4/3 / 4/3  + 4 / 4/3 + 4  

⇒  4/3(3/4) + 4(3/4) + 4

⇒ 1 + 4 + 4 = 9

Therefore,

α/β + β/α +2×(1/α +1/β)+ 3 α×β = 9

#SPJ2

Similar questions