Math, asked by h9hadnaratbrhare, 1 year ago

If alpha beta are zeroes of x2-x-4 then find alpha4+beta4

Answers

Answered by Divyankasc
10
Formulas :
(αβ) = c/a
α + β = -b/a
-------------------
Equation : x² - x - 4

To find : α⁴ + β⁴

Solution :

α⁴ + β⁴ = (α² + β²)² - 2(αβ)²
(Eq.1)

But, α² + β² = (α + β)² - 2(αβ)
= (1)² - 2(-4)
= 1 + 8
= 9

Substitution in Eq.1
→ α⁴ + β⁴ = (9)² - 2(-4)²
→ α⁴ + β⁴ = 81 - 32
→ α⁴ + β⁴ = 49
Answered by Dwellon
32

\huge\tt{\bold{\underline{\underline{Question᎓}}}}

If alpha beta are zeroes of x2-x-4 then find alpha4+beta4

\huge\tt{\bold{\underline{\underline{Answer᎓}}}}

╔════════════════════════╗

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _✍️

Formulas:-

\bold{\boxed{ =  > ( \alpha  \beta ) =  \frac{c}{a}}}

\bold{\boxed{ =  >  \alpha  +  \beta  =  -  \frac{b}{a}}}

 =  >  {eq}^{n}  =  {x}^{2}  - x - 4

To \: Find \:  =  { \alpha }^{4}  +  { \beta }^{4}

 =  >  { \alpha }^{4}  +  { \beta }^{4}  =  {( { \alpha }^{2}  +  { \beta }^{2}) }^{2}  - 2( \alpha  \beta )....(i)

 =  > But\: { \alpha }^{2}  +  { \beta }^{2}  =  {( \alpha  +  \beta )}^{2}  - 2( \alpha  \beta )

 =  {(1)}^{2}  - 2(4) = 1 + 8 = 9

Substitute in Equation1:-

 =  >  { \alpha }^{4}  +  { \beta }^{4}  =  {(9)}^{2}  - 2 { (- 4)}^{2}

 =  >  { \alpha }^{4}  +  { \beta }^{4}  = 81 - 32

 =  >  { \alpha }^{4}  +  { \beta }^{4}  = 49

╚════════════════════════╝

нσρє ıт нєłρs yσυ

_____________________

тнαηkyσυ

Similar questions