Math, asked by papireddy35, 9 months ago

if alpha, beta are zeros if x²+5x+1 then find a quadratic polynomial whose zeros are alpha+2, beta+2​

Answers

Answered by waqarsd
0

Answer

  \large{\bold{ {x}^{2}  + x - 5}}

Step-by-Step-Explanation:

If  \:  \alpha  \: and \:  \beta  \: are \: the \:  roots \:  \\  of  \: A \:  Quadratic  \: Equation  \:  \\ then \:  the \:  equation \:  is  \: given  \: by \:  \\  {x}^{2}  - ( \alpha  +  \beta )x +  \alpha  \beta  \\  \\ given \: eqn \:  \\  \\  {x}^{2}  + 5x + 1 \\  \\  =  >  \alpha  +  \beta  =  - 5 \\  \\   =  > \alpha  \beta  = 1 \\  \\ now \: the \: new \: roots \: are  \:  \\ \alpha  + 2 \: and \:  \beta  + 2 \\  \\  =  > a =  \alpha  + 2 \\  \\ =  >  b =  \beta  + 2 \\  \\  required \: qe \\  \\  {x}^{2}  - (a + b)x + ab \\ \\  \\   \\  =  > a + b =  \alpha  + 2 +  \beta  + 2 \\  \\  =  > a + b =  (\alpha  +  \beta ) + 4 \\  \\  =  > a + b =  - 5 + 4 =  - 1  \\  \\   \\  =  > ab = ( \alpha  + 2)( \beta  + 2) \\  \\  =  > ab  =  \alpha  \beta  + 2( \alpha  +  \beta ) + 4 \\  \\  =  > ab = 1 + 2( - 5) + 4 =  - 5 \\  \\ therefore \: the \: eq \: is \\  \\  \\  \\  \bold{ {x}^{2}  + x - 5} \\

HOPE IT HELPS

Similar questions