if alpha beta are zeros of p(x) =kx square + 4 x + 4 such that Alpha square plus beta square is equals to 4 find the value of k
Answers
Answer:
Step-by-step explanation:
α and β are the zeros of the given polynomial Kx² + 4x + 4 = 0
so, product of zeros = αβ = constant/coefficient of x² = 4/K
sum of zeros = α + β = -coefficient of x/Coefficient of x² = -4/k
Now, α² + β² = 24
⇒(α + β)² - 2αβ = 24
⇒(-4/k)² - 2(4/k) = 24
⇒16/K² - 8/k = 24
⇒ 2 - k = 3k²
⇒3k² + k -2 = 0
⇒ 3k² + 3k - 2k - 2 = 0
⇒3k(k + 1) - 2(k +1) = 0
⇒(3k -2)(k + 1) = 0
Hence, k = 2/3 and -1
Answer:
p(x) = kx² + 4x + 4
if α, β are the roots of the above equation then
α + β = - 4/k and αβ = 4/k
α² + β² = 4 (given)
(α + β)² = α² + β² + 2αβ
(-4/k)² = 4 + 2*4/k
16/k² = 4 + 8/k
16/k² = (4k + 8)/k
16k = 4k³ + 8k²
16k - 4k³ - 8k² = 0
-4k(k² + 2k - 4) = 0
either k = 0 but k≠0 because it is a coefficient of x²
or k² + 2k - 4 = 0 where a = 1, b = 2, c = -4
k = -2 ± √(4 + 16) / 8
k = (-2 ± √20)/8
k = (-2±2√5)/8
k = (-1±√5)/4