Math, asked by mukeshkaindal81, 10 months ago

if Alpha, beta are zeros of polynomial 2xsquare-6x+ k, find value of k. s.t
(Alpha+ beta) square - alpha × beta = 40​

Answers

Answered by CharmingPrince
24

{\huge{\underline{\underline{\sf {\mathfrak{Answer}}}}}}

{\underline{\underline{\rm {Given:}}}}

  • p(x)=2x^2-6x+k
  • (\alpha + \beta )^2 -\alpha × \beta = 40

{\underline{\underline{\rm {Solution:}}}}

\alpha + \beta = \dfrac{-Coefficient \ of \ x}{Coefficient \ of \ x^2}

\alpha + \beta = \dfrac{-(-6)}{2}

\alpha + \beta = 3

\alpha × \beta = \dfrac{Constant \ term }{Coefficient \ of \ x^2}

\alpha × \beta = \dfrac{k}{2}

\underline{\underline{\rm{Simplifying \ the \ given \ expreseion :}}}

\alpha + \beta )^2 - \alpha × \beta = 40

(3)^2 - \dfrac{k}{2} = 40

\dfrac{k}{2} = 9 - 40

\dfrac{k}{2} = -31

\boxed{\implies{\boxed{k = -62}}}

Similar questions