If alpha, beta be the roots of the equation 3x^2+2x+1=0, find an equation whose roots are 1-alpha/1+alpha, 1-beta/1+beta.
Answers
Answer: acx2+b(a+c)x+(a2+c2+2ac)=0acx2+b(a+c)x+(a2+c2+2ac)=0 .
Solution:
The given quadratic equation is ax2+bx+c=0ax2+bx+c=0 with roots αα and ββ . Let, sum of roots = α+β=p=−baα+β=p=−ba and product of roots = αβ=r=caαβ=r=ca
We have to find the equation whose roots are β+1αβ+1α and α+1β,α+1β,
or, the new roots should be αβ+1ααβ+1α and αβ+1βαβ+1β
or, the new roots should be r+1αr+1α and r+1βr+1β .
So, basically the new root is r+1xr+1x, where r = product of roots = αβ=caαβ=caand x takes the values αα and ββ.
Let, the new root be represented by yy , so that y=r+1xorx=r+1yy=r+1xorx=r+1y
Setting this value, x=r+1yx=r+1y into the equation ax2+bx+c=0,ax2+bx+c=0, we get
a(r+1y)2+b(r+1y)+c=0a(r+1y)2+b(r+1y)+c=0
or, cy2+b(r+1)y+a(r+1)2=0cy2+b(r+1)y+a(r+1)2=0
Putting r=car=ca, we get
cy2+b(ca+1)y+a(ca+1)2=0,cy2+b(ca+1)y+a(ca+1)2=0,
or, cy2+b(c+aa)y+a(c+aa)2y=0cy2+b(c+aa)y+a(c+aa)2y=0,
or, cy2+b(c+aa)y+(c+a)2a=0,cy2+b(c+aa)y+(c+a)2a=0,
or, acy2+b(a+c)y+(a2+c2+2ac)=0acy2+b(a+c)y+(a2+c2+2ac)=0.
Replacing yy with xx in order to write the equation in traditional way, we get the newly formed equation as the answer:
acx2+b(a+c)x+(a2+c2+2ac)=0acx2+b(a+c)x+(a2+c2+2ac)=0 Ans.
Answer:
Step-by-step explanation:
f(x) = 3x²+2x+1
roots are a and b
new zeroes 1-a/1+a and 1-b/1+b
trick : x = 1-a/1+a
x + xa = 1-a
x+ xa - 1 +a = 0
a(x+1) = 1-x
a = 1-x/1+x
now replace x by 1-x/1+x in f(x)
3 (1-x/1+x)² + 2(1-x/1+x) + 1 = 0
x² -2x +3 =0 is the required polynomial.
======================
Hope it helps!