If alpha, Beta,gama are the zeroes of the polynomial
6xsquare+ 3xsquare- 5x+1, find the value of a alpha di power-1+beta di power-1+gama di power-1
Answers
Answer:
Step-by-step explanation:
Given that:-
we have to find,
α^-1 + β^-1 + γ^-1
⇒1/α + 1/β + 1/γ
⇒(βγ + αγ + αβ)/αβγ-------------(1)
Now,
From the GIVEN Equation:-
6x³ + 3x² - 5x + 1 = 0
Where,
a = 6
b = 3
c = (-5)
d = 1
we know that:-
α + β + γ = -b/a = -3/6 = -1/2
αβγ = -d/a = -1/6
αβ + βγ + αγ = c/a = -5/6
Put the values in -----(1)
We get,
⇒(βγ + αγ + αβ)/αβγ
⇒ (-5/6) / (-1/6)
⇒30/6
⇒5
Follow me!
@(¯`·.¸¸.·´¯`·.¸¸.-> ȋțžקȑȋñ磧§ñķ <-.¸¸.·´¯`·.¸¸.·´¯)
Follow me!
Answer:
α⁻¹ + β⁻¹ + γ⁻¹ = 5
Step-by-step explanation:
The zeroes of the given cubic polynomial are α, β and γ respectively.
Given polynomial ;
F(x) = 6x³ + 3x² - 5x + 1
On comparing the given equation with ax³ + bx² + cx + d, we get -
- a = 6
- b = 3
- c = -5
- d = 1
Sum of zeroes = -b/a
⇒ α + β + γ = -3/6
⇒ α + β + γ = -1/2
Sum of product of zeroes = c/a
⇒ αβ + βγ + αγ = -5/6
Product of zeroes = -d/a
⇒ αβγ = -1/6
We need to find;
Now, put the above values here;