If Alpha,beta,gama are the zeroes of the polynomial P(x)=x³-6x²-x+30 then the value of (alpha×beta+beta×gama+gama×alpha)+alpha×beta×gama
Answers
*Note:- ω=gamma*
Given:-
α,β and ω are the zeroes of the polynomial, x³-6x²-x+30
To find:-
Value of αβ+βω+ωα+αβω
→we know,
αβ+βω+ωα+αβω= +
→Using this↑ and polynomial we get↓
αβ+βω+ωα+αβω= +
→αβ+βω+ωα+αβω=-1-30
→αβ+βω+ωα+αβω=-31
If the Zeros of the cubic Polynomial include αβω,then the general form of p(x) are:-
•α+β+ω =
•αβ+βω+ωα=
•αβω =
Relation between roots and coefficients:
Let us take
f (x) = a₀xⁿ + a₁xⁿ⁻¹ + . . . + aⁿ
be a polynomial of degree n with real or complex coefficients, where a₀ ≠ 0.
If α₁, α₂, ..., αₙ be the roots of the equation f(x) = 0,
α₁ + α₂ + ... + αₙ = - a₁/a₀
α₁α₂ + α₁α₃ + ... = a₂/a₀
..... ..... ..... .....
α₁α₂ ... αₙ = (- 1)ⁿ aₙ/a₀
Now we solve the given problem:
The given polynomial is
f (x) = x³ - 6x² - x + 30
Since α, β, γ are the zeroes of f (x), we can write
α + β + γ = - (- 6/1) αβ + βγ + γα = - 1/1
or, α + β + γ = 6 ... (i) or, αβ + βγ + γα = - 1 ... (ii)
αβγ = - 30/1
or, αβγ = - 30 ... (iii)
Now, (αβ + βγ + γα) + αβγ
= (- 1) + (- 30), by (ii), (iii)
= - 1 - 30
= - 31