If alpha,beta,gama are zeroes of p(x) = x2+5x²+4 then find the value of alpha+beta+gama
Answers
Answered by
2
Answer:
α,β,γ zeroes of polynomial x
3
+px
2
+qx
2
+2 i.e, on keeping x=αorβorγ, we will get x
3
+px+qx+2=0
Also, αβ+1=0
We know that sum of roots of cubic polynomial =
1
−p
⇒α+β+γ=−p & αβ+βγ+γα=q
⇒αβγ=−2
Since αβγ=−2
& αβ+1=0⇒αβ=−1
⇒(−1)γ=−2
⇒γ=2
∴α+β+2=−p ⇒α+β=−p−2→(1)
αβ+βγ+γα=q⇒−1+2β+2α=q
⇒(α+β)=
2
(q+1)
→(2)
Equating (1)&(2)
⇒−p−2=
2
q+1
⇒−2p−4=q+1
⇒2p+q+5=0
Hence, the answer is 2p+q+5=0.
Similar questions