if alpha , beta gamma and delta are the roots of equation x^4-x^3 sin 2 theta+x^2cos^2 theta-xcos theta-sin theta=0 prove that tan^-1 alpha-tan^-1 beta+tan^-1 gamma+ tan^-1 delta=n pi+(pi)/2- theta
Answers
Answered by
1
Answer:
Given:
⇒tan(θ+
4
π
)=3tan3θ
⇒
1−tan
2
θ
1+tan
2
θ
=3
1−3tan
2
θ
3tanθ−tan
3
θ
⇒tan
4
θ−2tan
2
θ+
3
8
tanθ−
3
1
=0
⇒tan
4
θ+0tan
3
θ−2tan
2
θ+
3
8
tanθ−
3
1
=0
Therefore sum of roots is,
tanα+tanβ+tanγ+tanδ=0
Step-by-step explanation:
hope it helps you
Answered by
2
Answer Text
Solution :
Given equation is,
x4-x3sin2β+x2cos2β-xcosβ-sinβ=0
As x1,x2,x3andx4 are the roots of the above equation.
∴∑x1=sin2β
∑x1x2=cos2β
∑x1x2x3=cosβ
x1x2x3x4=-sinβ
Now, tan(tan-1x1+tan-1x2+tan-1x3+tan-1x4)=
∑x1-∑x1x2x3
1-∑x1x2+x1x2x3x4
=
sin2β-cosβ
1+cos2β-sinβ
=
2sinβcosβ-cosβ
2sin2β-sinβ
=
cosβ(2sinβ-1)
sinβ(2sinβ-1)
=cotβ=tan(
π
2
-β)
∴tan(tan-1x1+tan-1x2+tan-1x3+tan-1x4)=tan(
π
2
-β)
∴tan-1x1+tan-1x2+tan-1x3+tan-1x4=nπ+
π
2
-β, where n∈Z.
Similar questions
Hindi,
3 months ago
Business Studies,
3 months ago
English,
3 months ago
Business Studies,
7 months ago
English,
7 months ago
Computer Science,
1 year ago