Math, asked by rahman2066, 8 months ago

if alpha,beta,gamma are the roots of equaton x3+ax2+bx+c =0 then find alpha-1 + beta-1 + gamma-1​

Answers

Answered by ayushomkar2425
1

Answer:

plz mark as brainliest

Step-by-step explanation:

Given α,β,γ are roots of equation

x  

3

+px+q=0...(1)

then using properties of quadratic equation.

α+β+γ=0,αβγ=−q & αβ+βγ+γα=+p

then  

y =  

​  

 

α

β

γ

​  

 

β

γ

α

​  

 

γ

α

β

​  

 

​  

=α(βγ−α  

2

)−β(β  

2

−γα)+γ(αβ−γ  

2

)

⇒y=αβγ−α  

3

−β  

3

+αβγ−γ  

3

+αβ  

3

 

y=3αβγ=(α  

3

+β  

3

+γ  

3

)...(2)

now (α+β+γ)  

3

=α  

3

+β  

3

+γ  

3

+3αβγ(αβ+βγ+γα).

or

(α+β+γ)  

3

=(α  

3

+β  

3

+γ  

3

)+3[(α+β+γ)(αβ+βγ+γα)−αβγ]

0=α  

3

+β  

3

+γ  

3

+3[0+q]

[α  

3

+β  

3

+γ  

3

=−3q]

From eq (2)

y=−3q−(−3q)=0

∵[y=0]

∴ value of given expression is zero.

Similar questions