Math, asked by nishithapujala2, 10 months ago

if alpha beta gamma are the roots of the eqauation x^3+px^2+qx+r=0 then sigma (alpa-beta)^2

Answers

Answered by MaheswariS
1

\underline{\textbf{Given:}}

\mathsf{\alpha\;and\;\beta\;}\textsf{roots of the equation}\;\mathsf{x^3+px^2+qx+r=0}

\underline{\textbf{To find:}}

\textsf{The value of}

\mathsf{\sum\,(\alpha-\beta)^2}

\underline{\textbf{Solution:}}

\mathsf{Since\;\alpha\;and\;\beta\;}\textsf{roots of the equation}\;\mathsf{x^3+px^2+qx+r=0,}

\textsf{we have}

\mathsf{\alpha+\beta+\gamma=\dfrac{-p}{1}=-p}--------(1)

\mathsf{\alpha\beta+\beta\gamma+\gamma\alpha=\dfrac{q}{1}=q}--------(2)

\mathsf{\alpha\,\beta\,\gamma=\dfrac{-r}{1}=-r}--------(3)

\mathsf{Now,}

\mathsf{\sum\,(\alpha-\beta)^2}

\mathsf{=(\alpha-\beta)^2+(\beta-\gamma)^2+(\gamma-\alpha)^2}

\textsf{Using the identity,}\;\boxed{\bf\,(a-b)^2=a^2+b^2-2ab}

\mathsf{=(\alpha^2+\beta^2-2\,\alpha\,\beta)+(\beta^2+\gamma^2-2\,\beta\,\gamma)+(\gamma^2+\alpha^2-2\,\gamma\,\alpha)}

\mathsf{=2(\alpha^2+\beta^2+\gamma^2)-2(\alpha\,\beta+\beta\,\gamma+\gamma\,\alpha)}

\mathsf{=2[(\alpha^2+\beta^2+\gamma^2)-(\alpha\,\beta+\beta\,\gamma+\gamma\,\alpha)]}

\textsf{Using the identity,}

\boxed{\bf\,(a+b+c)^2=a^2+b^2+c^2+2(ab+bc+ca)}

\mathsf{=2[(\alpha+\beta+\gamma)^2-2(\alpha\,\beta+\beta\,\gamma+\gamma\,\alpha)-(\alpha\,\beta+\beta\,\gamma+\gamma\,\alpha)]}

\mathsf{=2[(\alpha+\beta+\gamma)^2-3(\alpha\,\beta+\beta\,\gamma+\gamma\,\alpha)]}

\textsf{Using equations (1) and (2), we get}

\mathsf{=2[(-p)^2-3q]}

\mathsf{=2[p^2-3q]}

\mathsf{=2\,p^2-6\,q}

\implies\boxed{\mathsf{\sum\,(\alpha-\beta)^2=2\,p^2-6\,q}}

\underline{\textbf{Find more:}}

If alpha and beta are the roots of the equation X²- 6 X + 6 = 0 what is alpha cube + beta cube + Alpha square + beta square + alpha + beta is equal to

https://brainly.in/question/20945725

if α & β are the zeros of the quadratic polynomial p(x)= 3X²-6x+4,find the value of α\β+β+α+2(1/α+1/β)+3αβ​

https://brainly.in/question/18209208

#SPJ3

Similar questions