If alpha, beta, gamma are the roots of the equation x^3+ax^2+bx+c=0 then alpha^-1+beta^-1+gamma^-1=
A) a/c
B) c/a
C) - b/c
D) b/a
Answers
Answered by
0
Answer:
Step-by-step explanation:
3:50
If `x^(3)+ax^(2)+bx+c=0` has the roots `alpha^(2)+beta
Answered by
1
Answer:
(C) -b/c
Step-by-step explanation:
here in this equation-x^3+ax^2+bx+c=0
A=1
B=a
C=b
D=c
let, alpha=ã
beta=b'
gamma=ç
we know
ã+b'+ç=(-B/A) = (-a) ...... 1
ãb'+b'ç+çã=C/A = (b) ...... 2
ã.b'.ç=(-D/A) = (-c) ...... 3
Let's rearrange: 1/ã+1/b'+1/ç
=>LCM is ã.b'.ç
=>(b'ç+ãç+ãb')/ã.b'.ç
=>using 2 on the numerator and 3 on denominator.
(b'ç+ãç+ãb')/ã.b'.ç = b/(-c)
=>(b'ç+ãç+ãb')/ã.b'.ç= (-b)/c
Similar questions