Math, asked by gaglu2509, 1 year ago

If alpha beta gamma are the zeroes of polynomial ax^3+bx^2+cx+d. Find value of 1/alpha+1/beta+1/gamma.

Answers

Answered by Riya09
251
let the zeros be m,n and p instead of alpha beta and gamma
according to question,
m + n + p = -b/a
mn + np + pm = c/a
mnp = -d/a

1/m + 1/n + 1/p
= ( np + mp + mn ) / ( mnp )
= ( c/a ) / ( -d/a )
= - c / d
answer is - c / d
Answered by hukam0685
4

\bf \red{\frac{1}{ \alpha }  +  \frac{1}{ \beta }  +  \frac{1}{ \gamma }  =  -  \frac{c}{d} } \\

Given:

  • If  \alpha,  \beta , \: and \:   \gamma are zeros of cubic polynomial a {x}^{3}  + b {x}^{2}  + cx + d .

To find:

  • Find the value of  \frac{1}{ \alpha }  +  \frac{1}{ \beta }  +  \frac{1}{ \gamma }  \\ .

Solution:

Concept to be used:

If  \alpha,  \beta,  \: and \:  \gamma are the zeros of cubic polynomial \bf a {x}^{3}  + b {x}^{2}  + cx + d ,where a≠0;then

  1.  \alpha   + \beta +   \gamma  =  \frac{ - b}{a} ...eq1 \\
  2.  \alpha  \beta  +  \beta  \gamma  +  \alpha  \gamma  =  \frac{c}{a} ...eq2 \\ and
  3.  \alpha  \beta  \gamma  =  \frac{ - d}{a} ...eq3 \\

Step 1:

Rewrite the expression to simplify.

 \frac{1}{ \alpha }  +  \frac{1}{ \beta }  +  \frac{1}{ \gamma }  =  \frac{ \beta  \gamma  +  \alpha  \gamma  +  \alpha  \beta }{ \alpha  \beta  \gamma }  \\

or

\frac{1}{ \alpha }  +  \frac{1}{ \beta }  +  \frac{1}{ \gamma }  =  \frac{ \alpha  \beta +  \beta  \gamma  +  \alpha  \gamma  }{ \alpha  \beta  \gamma }  \\

Step 2:

Write the relation of zeros and coefficient of cubic polynomial.

Put values from eq2 and eq3.

\frac{1}{ \alpha }  +  \frac{1}{ \beta }  +  \frac{1}{ \gamma }  =  \frac{  \frac{c}{a}  }{  -  \frac{d}{a}  }  \\

or

\frac{1}{ \alpha }  +  \frac{1}{ \beta }  +  \frac{1}{ \gamma }  =   \frac{c}{a}  \times  \frac{ - a}{d}  \\ \\

or

\frac{1}{ \alpha }  +  \frac{1}{ \beta }  +  \frac{1}{ \gamma }  =  -  \frac{c}{d}  \\

Thus,

Value is \bf \frac{1}{ \alpha }  +  \frac{1}{ \beta }  +  \frac{1}{ \gamma }  =  -  \frac{c}{d}  \\

Learn more:

1) If alpha beta and gamma are the zeros of the polynomials 4x^3 -2x^2 +x-1 the find the value of (alpha)^-1 + (beta)^-1 + ...

https://brainly.in/question/10812829

2) factorize using factor theorem :2x^3-5x^2+x+2

https://brainly.in/question/3947067

Similar questions