Math, asked by GRAGON, 2 months ago

if alpha beta gamma are the zeroes of the polynomial x3 + px2 + qx + r, then find 1/alpha beta + 1/beta gamma + 1/gamma alpha​

Answers

Answered by mathdude500
1

\large\underline{\sf{Given- }}

\red{\rm :\longmapsto\: \alpha , \beta , \gamma  \: are \: zeroes \: of \:  {x}^{3}  + p{x}^{2} +  qx + r\:}

\large\underline{\sf{To\:Find - }}

\boxed{ \rm{  \frac{1}{ \alpha  \beta }  +  \frac{1}{ \beta  \gamma }  +  \frac{1}{ \gamma  \alpha }}}

\large\underline{\sf{Solution-}}

We know that,

\red{\rm :\longmapsto\: \alpha , \beta , \gamma  \: are \: zeroes \: of \: a {x}^{3}  + b {x}^{2} +  cx + d, \: then}

 \purple{\boxed{ \bf{ \:  \alpha  +  \beta +   \gamma  =  - \dfrac{b}{a}}}}

 \purple{\boxed{ \bf{ \:  \alpha \beta   +  \beta  \gamma +   \gamma  \alpha  =  \dfrac{c}{a}}}}

 \purple{\boxed{ \bf{ \:  \alpha  \beta  \gamma  =  -  \: \dfrac{d}{a}}}}

Now, Given that,

\red{\rm :\longmapsto\: \alpha , \beta , \gamma  \: are \: zeroes \: of \:  {x}^{3}  + p{x}^{2} +  qx + r\:}

\rm :\longmapsto\:{ \bf{ \:  \alpha +   \beta  +  \gamma  =  - \dfrac{p}{1} =  - p}}

and

\rm :\longmapsto\:{ \bf{ \:  \alpha +   \beta  +  \gamma  =  - \dfrac{r}{1} =  - r}}

Now, Consider,

\rm :\longmapsto\:\dfrac{1}{ \alpha  \beta }  + \dfrac{1}{ \beta  \gamma }  + \dfrac{1}{ \gamma  \alpha }

\rm \:  =  \:  \: \dfrac{ \gamma  +  \alpha  +  \beta }{ \alpha  \beta  \gamma }

\rm \:  =  \:  \: \dfrac{ \alpha   + \beta  +  \gamma }{ \alpha  \beta  \gamma }

\rm \:  =  \:  \: \dfrac{ - p}{ - r}

\rm \:  =  \:  \: \dfrac{p}{r}

Hence,

 \purple{\bf :\longmapsto\:\dfrac{1}{ \alpha  \beta }  + \dfrac{1}{ \beta  \gamma }  + \dfrac{1}{ \gamma  \alpha }  = \dfrac{p}{r} }

Additional Information :-

\red{\rm :\longmapsto\: \alpha , \beta   \: are \: zeroes \: of \: a {x}^{2}  + b {x}^{} +  c, \: then}

\boxed{\red{\sf Sum\ of\ the\ zeroes=\frac{-coefficient\ of\ x}{coefficient\ of\ x^{2}}}}

and

\boxed{\red{\sf Product\ of\ the\ zeroes=\frac{Constant}{coefficient\ of\ x^{2}}}}

Similar questions