Math, asked by rakshitha60, 11 months ago

if alpha beta gamma are the zeros of polynomial x³ + p X³ + q x + R then 1 by Alpha²+ 1 by beta²+ 1 by gamma ²​

Answers

Answered by Anonymous
4

ANSWER

q^2+q / R^2

EXPLANATION

see attachment

mark me as brainliest

Attachments:
Answered by Anonymous
4

Given \:  \: Question \: Is \:  \\  \\  \alpha  \:  \:  \:  \beta  \:  \:  \: and \:  \:  \:  \gamma  \:  \:  \: are \:  \:  \: the \:  \:  \: the \:  \:  \: zeroes \:  \: of \:  \:  \\  f(x) = x {}^{3}  + px {}^{2}  + qx + r \\  find \:  \:  \:  \frac{1}{ \alpha  {}^{2} }  +  \frac{1}{ \beta  {}^{2} }  +  \frac{1}{ \gamma  {}^{2} }  \\  \\ Answer \:  \\  \\  \frac{1}{ \alpha  {}^{2} }  +  \frac{1}{ \beta  {}^{2} } +  \frac{1}{ \gamma  {}^{2} }   =  \frac{( \alpha  {}^{2}  +  \beta  {}^{2}  +  \gamma  {}^{2} }{( \alpha  {}^{2} \beta  {}^{2}  \gamma  {}^{2} ) }  \\  \\ for \:  \: a \:  \: general \:  \: cubic \:  \: polynomial \:  \:  \: say \:  \:  \\ g(x) = ax {}^{3}  + b {}^{3}  + cx + d \\ we \:  \: have \:  \\  \\ ( \alpha  +  \beta  +  \gamma ) =  \frac{ - b}{a}  \\ ( \alpha  \beta  +  \beta  \gamma  +  \alpha  \gamma ) =  \frac{c}{a}  \\ and \:  \:  \:  \alpha  \beta  \gamma  =  \frac{ - d}{a}  \\  \\ here \\  \\  ( \alpha  +  \beta  +  \gamma ) =  - p \\ ( \alpha  \beta  +  \beta  \gamma  +  \alpha  \gamma ) = q \\ and \\ ( \alpha  \beta  \gamma ) =  - r \\  \\let \:  \:  \:  x =  \frac{( \alpha  {}^{2}   +   \beta  {}^{2}   +   \gamma  {}^{2} )}{( \alpha  {}^{2} \beta  {}^{2} \gamma  {}^{2} )  }  =  \frac{( \alpha  +  \beta  +  \gamma ) {}^{2}  - 2( \alpha  \beta  +  \beta  \gamma  +  \alpha  \gamma )}{( \alpha  {}^{2}  \beta  {}^{2}  \gamma  {}^{2} )}  \\  \\  x =  \frac{( - p {}^{2} - 2q) }{r {}^{2} }  \\  \\ therefore \:  \:  \:  \\   \\  \frac{1}{ \alpha  {}^{2} }  +  \frac{1}{ \beta  {}^{2} }  +  \frac{1}{ \gamma  {}^{2} }  =  \frac{ - (p {}^{2} + 2q) }{r {}^{2} }  \\  \\ note \:  \:  \\  \\ (x + y + z) {}^{2}  = x {}^{2}  + y {}^{2}  + z {}^{2}  + 2(xy + yz + zx)

Similar questions