Math, asked by shivanisudala, 1 year ago

if alpha beta gamma are the zeros of the polynomial f(x)=ax3+bx2+cx+d, then alpha2+beta2+gamma2=

Answers

Answered by brunoconti
55

Answer:

Step-by-step explanation:

BRAINLIEST BRAINLIEST BRAINLIEST BRAINLIEST BRAINLIEST BRAINLIEST

Attachments:
Answered by pinquancaro
74

The value is \alpha^2+\beta^2+\gamma^2=\frac{b^2-2ac}{a^2}

Step-by-step explanation:

Given : If alpha beta gamma are the zeros of the polynomial f(x)=ax^3+bx^2+cx+d.

To find : The value of \alpha^2+\beta^2+\gamma^2 ?

Solution :

If \alpha,\beta,\gamma are the zeros of the polynomial ax^3+bx^2+cx+d.

Then,

\alpha+\beta+\gamma=-\frac{b}{a}

\alpha \beta+\beta \gamma+\gamma\alpha=\frac{c}{a}

\alpha \beta \gamma=-\frac{d}{a}

Using identity,

\alpha^2+\beta^2+\gamma^2=(\alpha+\beta+\gamma)^2-2(\alpha \beta+\beta \gamma+\gamma\alpha)

\alpha^2+\beta^2+\gamma^2=(-\frac{b}{a})^2-2(\frac{c}{a})

\alpha^2+\beta^2+\gamma^2=\frac{b^2}{a^2}-\frac{2c}{a}

\alpha^2+\beta^2+\gamma^2=\frac{b^2-2ac}{a^2}

Therefore, the value is \alpha^2+\beta^2+\gamma^2=\frac{b^2-2ac}{a^2}

#Learn more

If alpha, beta, gamma are the zeroes of the polynomial f(x)=ax3+bx2+cx+d, then alphasquare+betasquare+gammasquare=

https://brainly.in/question/9855656

Similar questions