Math, asked by likovishal8716, 7 months ago

If alpha, beta, gamma are the zeros of the polynomial p(x)=axcube+bxsqure+cx+d then 1/alpha+1/beta+1/gamma=?

Answers

Answered by Bidikha
0

Question -

If \:  \alpha , \:  \beta  \: and \:  \gamma  \: are \: the \: zeros \: of \: the \\ polynomial \: p(x) = a {x}^{3}  + b {x}^{2}  + cx + d \\ then \:  \frac{1}{ \alpha }  +  \frac{1}{ \beta }  +  \frac{1}{ \gamma }

Solution -

 \alpha,  \:  \: \beta, \:  \gamma  \: are \: the \: zeros \: of \: p(x) = a {x}^{3}  +  b{x}^{2}  + cx + d

Then,

 \alpha  +  \beta  +  \gamma  =  \frac{ - b}{a}

 \alpha  \beta  \gamma  =  \frac{ - d}{a} ........1)

And

 \alpha  \beta  +  \beta  \gamma  +  \gamma  \alpha  =  \frac{c}{a} ......2)

Now,

 =  \frac{1}{ \alpha }  +  \frac{1}{ \beta }  +  \frac{1}{ \gamma }

 =  \frac{ \alpha  \beta  +  \beta  \gamma  +  \gamma  \alpha }{ \alpha  \beta  \gamma } [By 1 and 2]

 =  \frac{ \frac{c}{a} }{ \frac{ - d}{a} }

 =  \frac{c}{a}  \div  \frac{ - d}{a}

 =  \frac{c}{a}  \times  \frac{ - a}{d}

 =  \frac{ - c}{d}

Similar questions