Math, asked by gagan4282, 11 months ago

If alpha, beta, gamma are zeroes of x3+3x2-x-3 then find 1/alpha+1/beta+1/gamma​

Answers

Answered by sulochanarajthalor
2

Answer:

1/alpha+1/beta+1/gamma=-1/3

Answered by priyanka789057
5

Given : \alpha, \beta, \gamma are roots of the equation,

x^3+3x^2-x-3=0\hfill (1)

To find : the value of \frac{1}{\alpha}+\frac{1}{\beta}+\frac{1}{\gamma}

Step-by-step explanation: We know if the general equation of cubic be,

ax^3+bx^2+cx+d=0 and \alpha, \beta, \gamma are roots then,

\alpha+\beta+\gamma=(-1)^1\times\frac{b}{a}

\alpha\beta+\beta\gamma+\gamma\alpha=(-1)^2\frac{c}{a}

\alpha\beta\gamma=(-1)^3\frac{d}{a}

Hence,

\alpga+\beta+\gamma=(-1)^1\times \frac{3}{1}=-3

\alpha\beta+\beta\gamma+\gamma\alpha=(-1)^2\frac{-1}{1}=1

\alpha\beta\gamma=(-1)^3\frac{-3}{1}=3

Therefore,

\frac{1}{\alpha}+\frac{1}{\beta}+\frac{1}{\gamma}

=\frac{\alpha\beta+\beta\gamma+\gamma\alpha}{\alpha\beta\gamma}

=-\frac{1}{3}

Similar questions