Math, asked by pulin619, 5 hours ago

If ALPHA, BETA, GAMMA are zeros of polynomial
x {}^{3}   - 3x + 1
then find the value of
( \alpha  +  \beta ) {}^{3}  + ( \beta +   \gamma ) {}^{3}  + ( \gamma   + \alpha ) {}^{3}
Please don't spam

Answers

Answered by senboni123456
2

Answer:

Step-by-step explanation:

We have,

\tt{p(x)=x^3-3x+1}

Its zeros are \alpha,\,\beta,\,\gamma

Now,

\tt{Sum\,\,of\,\,roots,\,\alpha+\beta+\gamma=0}\\\\\tt{Sum\,\,of\,\,roots\,\,taken\,\,two\,\,at\,\,a\,\,time,\,\alpha\beta+\beta\gamma+\gamma\alpha=-3}\\\\\tt{Product\,\,of\,\,roots,\,\alpha\beta\gamma=-1}

\tt{\bigstar\,\,\,We\,\,\,know,\,\,\,a^3+b^3+c^3=3abc,\,\,if\,\,a+b+c=0}

We are given to find

\sf{S=\left(\alpha+\beta\right)^3+\left(\beta+\gamma\right)^3+\left(\gamma+\alpha\right)^3}

\sf{Now,\,\,consider\,\,that\,\,(\alpha+\beta)+(\beta+\gamma)+(\gamma+\alpha)=2(\alpha+\beta+\gamma)=0}

So,

\sf{\left(\alpha+\beta\right)^3+\left(\beta+\gamma\right)^3+\left(\gamma+\alpha\right)^3=3\cdot\left(\alpha+\beta\right)\cdot\left(\beta+\gamma\right)\cdot\left(\gamma+\alpha\right)}

\sf{\implies\,S=3\cdot\left(\alpha\beta+\beta^2+\gamma\alpha+\beta\gamma\right)\cdot\left(\gamma+\alpha\right)}

\sf{\implies\,S=3\cdot\left(\alpha\beta\gamma+\beta^2\gamma+\gamma^2\alpha+\beta\gamma^2+\alpha^2\beta+\alpha\beta^2+\alpha^2\gamma+\alpha\beta\gamma\right)}

\sf{\implies\,S=3\cdot\left(2\alpha\beta\gamma+\beta^2\gamma+\gamma^2\alpha+\beta\gamma^2+\alpha^2\beta+\alpha\beta^2+\alpha^2\gamma\right)}

\sf{\implies\,S=3\cdot\left(2\alpha\beta\gamma+\gamma^2(\alpha+\beta)+\alpha^2(\beta+\gamma)+\beta^2(\alpha+\gamma)\right)}

\sf{\implies\,S=3\cdot\left(2\alpha\beta\gamma+\gamma^2(-\gamma)+\alpha^2(-\alpha)+\beta^2(-\beta)\right)}

\sf{\implies\,S=3\cdot\left(2\alpha\beta\gamma-\gamma^3-\alpha^3-\beta^3\right)}

\sf{\implies\,S=3\cdot\left(2\alpha\beta\gamma-\alpha^3-\beta^3-\gamma^3\right)}

Again, we have \tt{\alpha+\beta+\gamma=0}

So,

\sf{\implies\,S=3\cdot\left(2\alpha\beta\gamma-3\,\alpha\beta\gamma\right)}

\sf{\implies\,S=3\cdot\left(-\alpha\beta\gamma\right)}

\sf{\implies\,S=-3\alpha\beta\gamma}

\sf{\implies\,S=-3(-1)=3}

Similar questions