Math, asked by manjula251, 8 months ago

If alpha beta gamma delta are the roots of the equation x⁴ - 4x³ + 5x² - 2x - 2=0, then
product of the roots is​

Answers

Answered by r1020304050607080900
0

Answer:

-2

Step-by-step explanation:

the last term (constant) is the product of roots in a polynomial (with the same sign in polynomial of even power) and vice versa.

eg for quadratic product of roots =c/a

Answered by pulakmath007
23

\displaystyle\huge\red{\underline{\underline{Solution}}}

FORMULA TO BE IMPLEMENTED

 \sf{  \alpha  \: , \beta , \gamma , \delta \: \:  are \: the \: roots \: of \: the \: equation \: \: }

a {x}^{4}  + b {x}^{3}  +  c{x}^{2}  +d x +e = 0 \:  \:

\displaystyle \:  \sum   \alpha  =  -  \frac{b}{a}   \:

\displaystyle \:  \sum   \alpha  \beta  =   \frac{c}{a}   \:

\displaystyle \:  \sum   \alpha \beta  \gamma   =   -   \frac{d}{a}   \:

\displaystyle \:   \alpha \beta  \gamma  \delta  =    \frac{e}{a}   \:

GIVEN

 \sf{  \alpha  \: , \beta , \gamma , \delta \: \:  are \: the \: roots \: of \: the \: equation \: \: }

 {x}^{4}   - 4{x}^{3}  +  5{x}^{2}   - 2 x  - 2 = 0 \:  \:

TO DETERMINE

The product of roots

EVALUATION

Comparing the given equation

 \sf{ {x}^{4}   - 4{x}^{3}  +  5{x}^{2}   - 2 x  - 2 = 0 \:  \: with}

{a {x}^{4}  + b {x}^{3}  +  c{x}^{2}  +d x +e = 0 \:  \: we \: get}

a = 1 \: ,  \: b= - 4 \: ,  \: c= 5 \: , \:  d = - 2 \: ,  \: e = - 2

RESULT

The required product of the roots

\displaystyle \:   \alpha \beta  \gamma  \delta  =    \frac{e}{a}   =  \frac{ - 2}{1}  =  - 2

Similar questions