Math, asked by sanjithbs420, 9 months ago

if alpha, beta re the zeros of the quadratic polynomial 2x2-4x+5 find the value of (i) alpha2 + beta2 (ii) (alpha-beta)2​

Answers

Answered by BrainlyRohith
21

Question:

If α , β are the zeroes of the quadratic polynomial 2x²- 4x + 5, find the value of

(i) α² + β²

(ii) (α - β)²

To find:

To \: find \: the \: value \: of:

1) \:  {  \alpha }^{2}  +  { \beta }^{2}

2) \:  {( \alpha  -  \beta )}^{2}

Answer:

Given:

An quadratic equation is given,

2 {x}^{2}  - 4x + 5 = 0

(i)   { \alpha }^{2}  +  { \beta }^{2}

(ii) {( \alpha  -  \beta )}^{2}

Step-by-step explanation:

2 {x}^{2}  - 4x + 5 = 0

It's \: of \: the \: form,

a {x}^{2}  + bx + c = 0

a = 2 , b = -4 , c = 5

 \boxed{Sum \: of \: roots =  \frac{ - b}{a} }

 \alpha  +  \beta  =  \frac{ - ( - 4)}{2}

 \boxed{ \alpha  +  \beta  =  2}

 \boxed{Product \: of \: roots =  \frac{ c}{a} }

 \boxed{\alpha  \beta  =  \frac{5}{2} }

\underline{ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: }

1) \:  {  \alpha }^{2}  +  { \beta }^{2}

\implies  {( \alpha  +  \beta )}^{2}  - 2 \alpha  \beta

Now, substituting the values

\implies  {(2)}^{2}  -  \not{2}\big(\frac{5}{ \not{2}}\big)

 \implies 4 - 5

\implies \boxed{ {  \alpha }^{2}  +  { \beta }^{2}  =  - 1}

\underline{ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: }

2) \:  {( \alpha  -  \beta )}^{2}

\implies  \underline{ \bold{ { \alpha }^{2}  +  { \beta }^{2} } }- 2 \alpha  \beta

\implies  {( - 1)}^{2}  -  \not{2} \big( \frac{5}{ \not{2}}  \big)

\implies 1 + 5

 \implies \boxed{ {( \alpha  -  \beta )}^{2}  = 6}

\underline{ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: }

Formula used:

 \bigstar Sum \: of \: roots =  \frac{ - b}{a}

 \bigstar Product \: of \: roots =  \frac{ c}{a}

 \bigstar  {  \alpha }^{2}  +  { \beta }^{2} = {( \alpha  +  \beta )}^{2}  - 2 \alpha  \beta

 \bigstar  {( \alpha  -  \beta )}^{2} = { \alpha }^{2}  +  { \beta }^{2} - 2 \alpha  \beta

Similar questions