Math, asked by AharonMathews, 1 year ago

If alpha,beta,sigma are zeroes of polynomial 2X^3 - 4X^2 +6X^ + 9 = 0, then find the value of alpha^-1 + beta^-1 + sigma^-1

Attachments:

Answers

Answered by brunoconti
41

Answer:

Step-by-step explanation:

Attachments:

priach961282005: Hii
brunoconti: hello
priach961282005: तुमारा नाम
sanyuktarora5375: तुम्हारा*
Answered by Swarup1998
58
\underline{\text{Formulation :}}

\text{Let us consider the following polynomial of degree n}

\mathrm{f(x)=a_{0}x^{n}+a_{1}x^{n-1}+...+a_{n}}

\mathrm{where\:a_{0},\:a_{1},...\:a_{n}\:are\:given\:numbers\:with\:a_{0}\neq 0}

\mathrm{If\:x_{1},\:x_{2},\:...,\:x_{n}\:be\:the\:zeroes,}

\mathrm{\sum x_{1}=-\frac{a_{1}}{a_{0}}}

\mathrm{\sum x_{1}x_{2}=\frac{a_{2}}{a_{0}}}

\mathrm{\sum x_{1}x_{2}x_{3}=-\frac{a_{3}}{a_{0}}}

\mathrm{\;\;\;... ... ...}

\mathrm{x_{1}x_{2}...x_{n}=(-1)^{n}\frac{a_{n}}{a_{0}}}

\underline{\text{Solution :}}

\text{The given polynomial is}

\mathrm{P(x)=2x^{3}-4x^{2}+6x+9}

\mathrm{If\:\alpha,\:\beta,\:\gamma\:be\:the\:zeroes}

\mathrm{\sum \alpha=-\frac{-4}{2}}

\to \boxed{\mathrm{\alpha+\beta+\gamma=2}}

\mathrm{\sum \alpha \beta=\frac{6}{2}}

\to \boxed{\mathrm{\alpha\beta+\beta\gamma+\gamma\alpha=3}}

\boxed{\mathrm{\alpha\beta\gamma=-\frac{9}{2}}}

\mathrm{Now,\:{\alpha}^{-1}+{\beta}^{-1}+{\gamma}^{-1}}

\mathrm{=\frac{1}{\alpha}+\frac{1}{\beta}+\frac{1}{\gamma}}

\mathrm{=\frac{\beta\gamma+\gamma\alpha+\alpha\beta}{\alpha\beta\gamma}}

\mathrm{=\frac{3}{-\frac{9}{2}}}

\mathrm{=-3\times \frac{2}{9}}

\mathrm{=-\frac{2}{3}}

\to \boxed{\mathrm{{\alpha}^{-1}+{\beta}^{-1}+{\gamma}^{-1}=-\frac{2}{3}}}

\text{Hence, proved.}

Anonymous: very clean explanation
Swarup1998: Thank ya! :)
Anonymous: welcome bro:)
Similar questions