if alpha, bita, gama,are the roots of f(x) =
axbx' + cx + d. then 1/a + 1/B
+ 1/4 =
O b/d
O c/d
O -c/d
O -c/a
Answers
Answered by
1
Step-by-step explanation:
Correct Question :-
- If α, β and γ are the roots/zeroes of polynomial f(x) = ax³ + bx² + cx + d. Then, 1/α + 1/β + 1/γ = ?
Solution :-
Given -
- If α, β and γ are zeroes of polynomial f(x) = ax³ + bx² + cx + d
To Find -
Value of 1/α + 1/β + 1/γ
→ βγ + αγ + βα/αβγ
→ αβ + βγ + γα/αβγ
Now,
As we know that :-
- αβγ = -d/a
And
αβ + βγ + γα = c/a
Then,
The value of 1/α + 1/β + 1/γ or αβ + βγ + γα/αβγ is
→ c/a ÷ -d/a
→ c/a × -a/d
→ -c/d
Hence,
The value of 1/α + 1/β + 1/γ is -c/d.
Hence,
Option (3) is correct.
Additional information :-
For a quadratic polynomial :-
- α + β = -b/a
- αβ = c/a
And
For a cubic polynomial :-
- α + β + γ = -b/a
- αβγ = -d/a
- αβ + βγ + γα = c/a
Answered by
2
- If alpha beta and gamma are zeros of polynomial f(x) = ax³ + bx² + CX + d.
- Volue of 1/alpha + 1/beta + 1/Gamma
(beta gamma) + (alpha Gamma) + *beta alpha)/(alpha beta gamma)
(alpha beta + beta gamma + Gamma alpha) / (alpha beta gamma)
(alpha beta gamma) = -d/a
(alpha beta + beta gamma + Gamma alpha) = c/a
The value of 1/alpha + 1/beta + 1/Gamma or (alpha beta + beta gamma + Gamma alpha) / (alpha beta gamma) is.
c/a = -d/a
c/a × -a/d
-c/d
Similar questions