If alpha=e^i 8 pi/11then find re(a+a^2+a^3+a^4+a^5)
Answers
Answer:
Step-by-step explanation:
Given that a=e^((8i π)/11), then a^2=e^((16i π)/11).
Similarly we have, a^3=e^((24i π)/11), a^4=e^((32i π)/11), and a^5=e^((40i π)/11).
Now, Re(a+a^2+a^3+a^4+a^5 )=Re(a)+Re(a^2 )+Re(a^3 )+Re(a^4 )+Re(a^5 ) and
Re(a)+Re(a^2 )+Re(a^3 )+Re(a^4 )+Re(a^5 )=1+1+1+1+1=5
Answer:
If alpha=e^i 8 pi/11 then re(a+a^2+a^3+a^4+a^5) = -0.5 (-1/2)
Step-by-step explanation:
α = = cos (8π/11) + i Sin(8π/11)
α² = = cos (16π/11) + i Sin(16π/11)
α³ = = cos (24π/11) + i Sin(24π/11)
α⁴ = = cos (32π/11) + i Sin(32π/11)
α⁵ = = cos (40π/11) + i Sin(40π/11)
we know that
Re = Cosθ Sinθ = Imaginary
Re(α + α² + α³ + α⁴ + α⁵) = cos (8π/11) + Cos(16π/11) + cos(24π/11) + Cos(32π/11) + Cos(40π/11)
Using Cosθ = Cos(θ±2π) & Cosθ=cos(-θ)
= cos (8π/11) + cos (6π/11) + Cos(2π/11) + Cos(10π/11) + Cos(4π/11)
= -0.655 -0.142 + 0.841 - 0.96 + 0.416
= - 0.5
= -1/2