Math, asked by mfazilabbas, 2 days ago

If alpha is an acute angle and tan alpha + cot alpha = 2, then the value of sin^3 alpha + cos^3 alpha is (a) 1 (b) b) 2/V2 (c)1/2(d)2^1/2​

Answers

Answered by jitendra12iitg
0

Answer:

The correct answer is \dfrac{1}{\sqrt 2}

Step-by-step explanation:

Given  \tan\alpha+\cot\alpha=2

          \Rightarrow \dfrac{\sin\alpha}{\cos\alpha}+\dfrac{\cos\alpha}{\sin\alpha}=2\\\\\Rightarrow \dfrac{\sin^2\alpha+\cos^2\alpha}{\sin\alpha\cos\alpha}=2\\\\\Rightarrow \dfrac{1}{\sin\alpha\cos\alpha}=2\\\Rightarrow \sin\alpha\cos\alpha=\dfrac{1}{2}

Let   z=\sin^3\alpha+\cos^3\alpha

          =(\sin\alpha+\cos\alpha)(1-\dfrac{1}{2})

          =\dfrac{\sin\alpha+\cos\alpha}{2}

 \Rightarrow z^2=\dfrac{\sin^2\alpha+\cos^2\alpha+2\sin\alpha\cos\alpha}{4}=\dfrac{1+1}{4}=\dfrac{1}{2}\\\Rightarrow z=\dfrac{1}{\sqrt 2}

Similar questions