if alpha minus beta are roots of x square plus xminus 3 = 0 , find quadratic equation having roots alpha minus 2, beta minus 2
Answers
Answer:
2
2 +β
2 +β 2
2 +β 2 =(α+β)
2 +β 2 =(α+β) 2
2 +β 2 =(α+β) 2 −2αβ
2 +β 2 =(α+β) 2 −2αβ=(a−2)
2 +β 2 =(α+β) 2 −2αβ=(a−2) 2
2 +β 2 =(α+β) 2 −2αβ=(a−2) 2 +2(a+1)
2 +β 2 =(α+β) 2 −2αβ=(a−2) 2 +2(a+1)=a
2 +β 2 =(α+β) 2 −2αβ=(a−2) 2 +2(a+1)=a 2
2 +β 2 =(α+β) 2 −2αβ=(a−2) 2 +2(a+1)=a 2 −4a+4+2a+2
2 +β 2 =(α+β) 2 −2αβ=(a−2) 2 +2(a+1)=a 2 −4a+4+2a+2=a
2 +β 2 =(α+β) 2 −2αβ=(a−2) 2 +2(a+1)=a 2 −4a+4+2a+2=a 2
2 +β 2 =(α+β) 2 −2αβ=(a−2) 2 +2(a+1)=a 2 −4a+4+2a+2=a 2 −2a+6
2 +β 2 =(α+β) 2 −2αβ=(a−2) 2 +2(a+1)=a 2 −4a+4+2a+2=a 2 −2a+6=(a−1)
2 +β 2 =(α+β) 2 −2αβ=(a−2) 2 +2(a+1)=a 2 −4a+4+2a+2=a 2 −2a+6=(a−1) 2
2 +β 2 =(α+β) 2 −2αβ=(a−2) 2 +2(a+1)=a 2 −4a+4+2a+2=a 2 −2a+6=(a−1) 2 +5
2 +β 2 =(α+β) 2 −2αβ=(a−2) 2 +2(a+1)=a 2 −4a+4+2a+2=a 2 −2a+6=(a−1) 2 +5Minimum value is at a=1.
2 +β 2 =(α+β) 2 −2αβ=(a−2) 2 +2(a+1)=a 2 −4a+4+2a+2=a 2 −2a+6=(a−1) 2 +5Minimum value is at a=1.Value of expression at a=1 is 5.