Math, asked by sanru9p7atel, 1 year ago

If alpha n beta are angles in the first quadrant tan alpha=1/7,sin beta=1/√10 then find value of (alpha +2beta)

Answers

Answered by sarmadkaif1
58
I hope this will help u
Attachments:
Answered by mysticd
22

Answer:

 \alpha + 2\beta = 45\degree

Step-by-step explanation:

 Given \: \alpha \: and \: \beta \\ are \: angles \: in \: the \\ first \: quadrant

 tan\alpha = \frac{1}{7}\:---(1)

 sin\beta = \frac{1}{\sqrt{10}}\:---(2)

 cos\beta\\ = \sqrt{1-sin^{2}\beta}\\=\sqrt{1-\left(\frac{1}{\sqrt{10}}\right)^{2}}

=\sqrt{1-\frac{1}{10}}\\=\sqrt{\frac{10-1}{10}}\\=\sqrt{\frac{9}{10}}\\=\frac{3}{\sqrt{10}}\:--(3)

tan\beta \\= \frac{sin\beta}{cos\beta}\\=\frac{1}{3}\:---(4)

 tan2\beta = \frac{2tan\beta}{1-tan^{2}\beta}\\=\frac{2\times \frac{1}{3}}{1-\left(\frac{1}{3}\right)^{2}}\\=\frac{3}{4}\:---(5)

Now,\\tan(\alpha+2\beta)\\=\frac{\frac{1}{7}+\frac{3}{4}}{1-\frac{1}{7}\times \frac{3}{4}}\\=\frac{\frac{4+21}{28}}{\frac{28-3}{28}}\\=\frac{25}{25}\\=1\\=tan45\degree

\implies \alpha + 2\beta = 45\degree

Therefore,

 \alpha + 2\beta = 45\degree

•••♪

Similar questions