Math, asked by bodkhesamu, 3 days ago

If Alpha n beta are two zeros of polynomial 3x²-4x+1, fibd quadratic polynomial whose zeros are alpha square/beta + beta square/alpha​

Answers

Answered by rakeshdubey33
1

Step-by-step explanation:

Gven :

 \alpha  \:  \: and \:  \:  \beta

are the zeros of the polynomial

3 {x}^{2}  - 4x + 1

To find :

The quadratic polynomial whose zeros are ;

  \frac{ { \alpha }^{2} }{ \beta }  \:  \: and \:  \:  \frac{ { \beta }^{2} }{ \alpha }

Solution :

For the given quadratic polynomial

3 {x}^{2}  - 4x + 1

Sum of the roots =

 \alpha  \:  +  \:  \beta  =   -  \frac{ - 4}{3}   =  \frac{4}{3}

Product of the roots =

 \alpha  \beta  \:   =  \frac{1}{3}

Now,

 \frac{ { \alpha }^{2} }{ \beta }  +  \frac{ { \beta }^{2} }{ \alpha }  =   \frac{ { \alpha }^{3}  +  { \beta }^{3} }{ \alpha  \beta }  \\  =  \frac{( \alpha  +  \beta )( {( \alpha  +  \beta )}^{2}  -  3\alpha  \beta )}{ \alpha  \beta }

=

  \frac{ \frac{4}{3} ( { \frac{4}{3} }^{2}  - 3 \times  \frac{1}{3} )}{ \frac{1}{3} }  = 4( \frac{16}{9}  - 1) =  \frac{28}{9}

and,

 \frac{ { \alpha }^{2} }{ \beta }  \times  \frac{ { \beta }^{2} }{ \alpha }  =  \alpha  \beta  =  \frac{1}{3}

Required quadratic polynomial =

 {x}^{2}  - sx + p

where s = sum of zeros, and p = product of zeros

therefore,

 {x}^{2}  -  \frac{28}{9}x \:  +  \frac{1}{3}  \\  =  \frac{1}{9} (9 {x}^{2}  - 28x + 3)

Hence, the required polynomial.

Similar questions