If alpha nd beta are the zeroes of polynomial 2x^2-7x-3 then find the value of alpha^3+beta^3
Answers
Step-by-step explanation:
Given:-
Quadratic pilynomial 2x^2-7x-3
To find:-
If alpha nd beta are the zeroes of polynomial 2x^2-7x-3 then find the value of alpha^3+beta^3
Solution:-
Given quadratic polynomial = 2x^2-7x-3
On comparing with the standard quadratic pilynomial ax^2+bx+c then
a = 2
b=-7
c=-3
If α and β are the zeroes of the pilynomial then
Sum of the zeroes = -b/a
=>α+ β = -(-7)/2
α+ β = 7/2 ---------------(1)
Product of the zeroes = c/a
αβ = -3/2 ---------------(2)
On squaring the equation (1) both sides then
(α+ β)^2 = (7/2)^2
We know that (a+b)^2 = a^2+2ab+b^2
=>α^2+2 αβ +β^2 = 49/4
=>α^2+2(-3/2)+β^2 = 49/4
=>α^2-3+β^2 = 49/4
=>α^2+β^2 = (49/4)+3
=>α^2+β^2 = (49+12)/4
=>α^2+β^2 = 61/4-----------(3)
Now the value of α^3+ β^3
We know that
a^3+b^3 =(a+b)(a^2-ab+b^2)
α^3+ β^3 = (α+ β)(α^2+β^2-αβ)
=>α^3+ β^3 = (7/2)[(61/4)-(-3/2)]
=>α^3+ β^3 = (7/2)[(61/4)+(3/2)]
=>α^3+ β^3 = (7/2)[(61+6)/4]
=>α^3+ β^3 = (7/2)(67/4)
=>α^3+ β^3 = (7×67)/(2×4)
=>α^3+ β^3 = 469/8
Answer:-
The value of α^3+ β^3 for the given problem is
469/8
Used formulae:-
- Sum of the zeroes = -b/a
- Product of the zeroes = c/a
- (a+b)^2 = a^2+2ab+b^2
- a^3+b^3 =(a+b)(a^2-ab+b^2)