Math, asked by chittemblessy7, 9 months ago

if alpha
 \alpha and \beta are  the zeroes \: of \: the \: polynomial \: 2 x { + 5x + 1 \: }^{2} then \: the \: value \: of \alpha  +  \beta  +  \alpha  \times  \beta


Answers

Answered by BrainlyIAS
26

Answer

α + β + αβ = - 2

Explanation

Compare given equation 2x² + 5x + 1 with ax² + bx + c , we get ,

  • a = 2 , b = 5 , c = 1

also given α and β are zeroes of polynomial .

Let ,

Sum of zeroes , α + β = -b/a = -(5)/2

α + β = - ⁵/₂ ... (1)

Product of zeroes , αβ = c/a = (1)/(2)

αβ = ¹/₂ ... (2)

Now our required ,

α + β + αβ

⇒ ( α + β ) + ( αβ )

⇒ ( - ⁵/₂ ) + ( ¹/₂ ) [ From (1) & (2) ]

⇒ ( ⁻ ⁵ ⁺ ¹/₂ )

⇒ ⁻⁴/₂

- 2

More Info :

Kindly go through the given link for extra information

https://brainly.in/question/19923032

Answered by MaIeficent
26
\large{\red{\underline{\underline{\bold{Given:-}}}}}

• A quadratic polynomial 2x² + 5x + 1

\sf \alpha  \: and \:  \beta  \: are \: the \: zeroes \: of \: the \: given \: quadratic \: polynomial

\large{\blue{\underline{\underline{\bold{To\:Find:-}}}}}

 \sf the \: value \: of \: \alpha   + \beta   +  \alpha    \beta

\large{\green{\underline{\underline{\bold{Solution:-}}}}}

For a quadratic polynomial ax² + bx + c, if the zeroes are α and β

\sf Sum \: of \: zeroes( \: \alpha   + \beta )   =  \dfrac{ - b}{a}

\sf Product \: of \: zeroes( \: \alpha  \beta )   =  \dfrac{ c}{a}

Compare 2x² + 5x + 1 with ax² + bx + c

• a = 2
• b = 5
• c = 1

\sf sum \: of \: zeroes( \: \alpha   + \beta )   =  \dfrac{ - b}{a}   =  \dfrac{ - 5}{2}

\sf product \: of \: zeroes( \: \alpha   \beta )   =  \dfrac{ c}{a}   =  \dfrac{1 }{2}

Now:-

\sf  \implies \alpha  +  \beta  +  \alpha  \beta

\sf  \implies  \dfrac{ - 5}{2}  +  \dfrac{1}{2}

\sf  \implies  \dfrac{ - 5 + 1}{2}

\sf  \implies  \dfrac{ - 4}{2}

\sf  \implies  -2

Hence;

 \large \boxed{ \sf  \purple{ \implies \alpha  +  \beta  +  \alpha  \beta =     - 2}}



Similar questions