Math, asked by butterfly8932, 2 months ago

if alpha² and ß² are zeros of ax²+bx+c then evaluate: a) alpha²+ß² b) alpha²ß+alpha ß² c)1/alpha+1/ß​

Answers

Answered by TANVEERJAMAN
1

Answer:

Given:-

The external length, breadth and height of a closed rectangular wooden box are 18 cm, 10 cm and 6 cm respectively and thickness of wood is 1/2 cm. When the box is empty, it weights 15 kg and when filled with sand it weighs 100 kg

To Find:-

The weight of the cubic cm of wood and cubic cm of sand.

Solution:-

\begin{gathered} \rm \: Thickness \: of \: wood = \frac{1}{2} \: cm \\ \rm \: Internal \: length \: of \: wooden \: box = 18 - \bigg( \frac{1}{2} + \frac{1}{2} \bigg) = 18 - 1 = 17 \: cm \\ \\ \rm \: Internal \: breadth \: of \: wooden \: box = 10 - \bigg( \frac{1}{2} + \frac{1}{2} \bigg) = 9 \: cm \\ \\ \rm \: Internal \: depth \: of \: wooden \: box = 6 - \bigg( \frac{1}{2} + \frac{1}{2} \bigg) = 5 \: cm \\ \\ \therefore \: \rm Internal \: volume \: of \: wooden \: box \\ \leadsto \rm \: length \times breadth \times height \\ \leadsto \rm \: (17 \times 9 \times 5) \: {cm}^{3} \\ \\ \rm \: External \: volume \: of \: wood \\ \leadsto \rm \: length \times breadth \times height \\ \leadsto \rm \: (18 \times 10 \times 6) \: {cm}^{3} \\ \rm \leadsto \: 1080 \: {cm}^{3} \\ \\ \rm \: Volume \: of \: wood \: = \: External \: volume - Internal \: volume \\ \rm \longrightarrow \: (1080 - 765) \: {cm}^{3} = 315 \: {cm}^{3} \\ \\ \rm \: \: Weight \: of \: empty \: box = 15 \: kg \\ \implies \: \rm \: Weight \: of \: 315 \: {cm}^{3} wood \: is \: 15 \: kg \\ \therefore \: \rm Weight \: of \: 1 \: {cm}^{3} \: of \: wood = \bigg(\frac{15}{315} \bigg) \: kg = \frac{1}{21} \: kg \\ \tt \: Now \\ \rm \: Volume \: of \: sand = Internal \: volume \: of \: box = 765 \: {cm}^{3} \\ \rm Weight \: of \: sand = Weight \: of \: box \: filled \: with \: sand - Weight \: of \: empty \: box \\ \dashrightarrow \rm \: (100 - 15) \: kg = 85 \: kg \\ \\ \rm Volume \: of \: sand = 765 \: {cm}^{3} \\ \bigstar \red{ \boxed{ \purple{ \rm \: Weight \: of \: 1 \: {cm}^{3} \: of \: sand = \bigg(\frac{85}{725} \bigg) \: kg= \bold{ \frac{1}{9} < /u > < u > kg < /u > < u > < /u > < u > }}}}\end{gathered}

Thicknessofwood=

2

1

cm

Internallengthofwoodenbox=18−(

2

1

+

2

1

)=18−1=17cm

Internalbreadthofwoodenbox=10−(

2

1

+

2

1

)=9cm

Internaldepthofwoodenbox=6−(

2

1

+

2

1

)=5cm

∴Internalvolumeofwoodenbox

⇝length×breadth×height

⇝(17×9×5)cm

3

Externalvolumeofwood

⇝length×breadth×height

⇝(18×10×6)cm

3

⇝1080cm

3

Volumeofwood=Externalvolume−Internalvolume

⟶(1080−765)cm

3

=315cm

3

Weightofemptybox=15kg

⟹Weightof315cm

3

woodis15kg

∴Weightof1cm

3

ofwood=(

315

15

)kg=

21

1

kg

Now

Volumeofsand=Internalvolumeofbox=765cm

3

Weightofsand=Weightofboxfilledwithsand−Weightofemptybox

⇢(100−15)kg=85kg

Volumeofsand=765cm

3

Weightof1cm

3

ofsand=(

725

85

)kg=

9

1

</u><u>kg</u><u></u><u>

Similar questions