Math, asked by ankushmalik02005, 9 months ago

if alphaaa and betaa are the zeros ifbpolynomial 3xsquare +2x_6,then find the value of alpga square - Beta square​

Answers

Answered by Anonymous
1

Answer:

\large\boxed{\sf{-\dfrac{4}{9}\sqrt{19}}}

Step-by-step explanation:

Given a quadratic equation such that,

3 {x}^{2}  + 2x - 6 = 0

Also, it's given that the zereos are,

  •  \alpha
  •  \beta

Now, we know that,

Sum of zeroes = -b/a

 =  >  \alpha  +  \beta  =   \frac{ - 2}{3}

And,

Product of zeroes = c/a

 =  >  \alpha  \beta  =  \frac{ - 6}{3} \\  \\  =  >  \alpha  \beta  =  - 2

Now, to find the value of,

  •  { \alpha }^{2}  -  {  \beta }^{2}

We know that,

 \alpha  -  \beta  =  \sqrt{ {( \alpha  +  \beta )}^{2}  - 4 \alpha  \beta }

Substituting the values, we get,

 =  >  \alpha  -  \beta  =  \sqrt{ {( \frac{ - 2}{3}) }^{2}  - 4( - 2)}  \\  \\  =  >  \alpha  -  \beta  =  \sqrt{ \frac{4}{9}  + 8}  \\  \\  =  >  \alpha  -  \beta  =  \sqrt{ \frac{76}{9} }  \\  \\  =  >  \alpha  -  \beta  =  \sqrt{ \frac{19 \times  {2}^{2} }{ {3}^{2} } }  \\  \\  =  >  \alpha  -  \beta  =  \frac{2}{3}  \sqrt{19}

Now, we have,

 =  >  { \alpha }^{2}   -  { \beta }^{2} = ( \alpha  +  \beta )( \alpha  -  \beta ) \\  \\  =  >  { \alpha }^{2}   -  { \beta }^{2}  =  -  \frac{2}{3}  \times  \frac{2}{3}  \sqrt{19}  \\  \\  =  >  { \alpha }^{2}  -  { \beta }^{2}  =  -  \frac{4}{9}  \sqrt{19}

Hence, required value is \bold{-\dfrac{4}{9}\sqrt{19}}

Similar questions